Refine Your Search

Topic

Author

Search Results

Technical Paper

Shuttle Sleep Shift Operations Support Program

1991-07-01
911334
Shuttle crewmembers must frequently alter sleep/wake schedules to accommodate launch and mission timelines. These “alterations” tend to maximize sleep disruption and fatigue leading to a decreased operational “safety margin” during inflight operations. Changes in normal sleep/wake cycles have been shown to disrupt physiological circadian rhythm causing fatigue, decreased alertness, increased irritability, altered judgement, and increased vulnerability to performance decrements.1 To minimize the impact of schedule shifts, and maximize sleep and physiological adaptation, the NASA operational environment has implemented a program to address these complex issues. The program plan “operationalizes” the experimental protocol used by Czeisler et al. (1990), which involves timed exposure to bright light during the targeted activity period and complete darkness during the targeted sleep period to rapidly shift crewmembers.
Technical Paper

Preliminary Design of Health Care Systems for Space Exploration

1991-07-01
911369
Health of space explorers is a requisite for success of human exploration missions and, potentially, for return of explorers to Earth. Continuous, long term existence and complex, potentially hazardous tasks in space environments will challenge health of explorers. Immediate return to Earth will not be possible. Health care systems are being designed to address these concerns, starting from the requirement to maintain health of crew members throughout all mission phases, and the assumption that clinical (medical), preventive, and occupational health care will be necessary in space as on Earth. Systems for medical care, health monitoring and countermeasures, and environmental monitoring and countermeasures are being designed. Basic system definition concepts include an individual crew member, a crew surgeon, remote consultation, equipment, and work area or volume within space habitats that is dedicated for health care.
Technical Paper

The Headache of Carbon Dioxide Exposures

2007-07-09
2007-01-3218
Carbon dioxide (CO2), a natural product of human metabolism, accumulates quickly in sealed environments when humans are present, and can induce headaches, among other symptoms. Major resources are expended to control CO2 levels to concentrations that are tolerable to the crews of spacecraft and submersible craft. It is not practical to control CO2 levels to those found in the ambient environment on earth. As NASA looks ahead to long-duration missions conducted far from earth, difficult issues arise related to the management and effects of human exposure to CO2. One is the problem of “pockets” of CO2 in the habitat caused by excess generation of the gas in one location without a mechanism to purge the area with fresh air. This results in the crew rebreathing CO2 from their exhaled breath, exposing them to a much higher concentration of CO2 than whole-module measurements would suggest. Another issue is the potential increased sensitivity to CO2 in microgravity.
Technical Paper

Operational Psychological Issues for Mars and other Exploration Missions

1997-07-01
972290
Long duration NASA-Mir program missions, and the planned International Space Station missions, have given impetus for NASA to implement an operational program of psychological preparation, monitoring, and support for its crews. For exploration missions measured in years, the importance of psychological issues increases exponentially beyond what is currently done. Psychologists' role should begin during the vehicle design and crew selection phases. Extensive preflight preparation must focus on individual and team adaptation, and leadership. Factors such as lack of resupply options and communication delays will alter in-flight monitoring and support capabilities, and require a more self-sufficient crew. Involvement in postflight recovery will also be necessry to ensure appropriate reintegration to the family and job.
Technical Paper

Risk Mitigation Water Quality Monitor

1997-07-01
972463
On the International Space Station (ISS), atmospheric humidity condensate and other waste waters will be recycled and treated to produce potable water for use by the crews. Space station requirements include an on-orbit capability for real-time monitoring of key water quality parameters, such as total organic carbon, total inorganic carbon, total carbon, pH, and conductivity, to ensure that crew health is protected for consumption of reclaimed water. The Crew Health Care System for ISS includes a total organic carbon (TOC) analyzer that is currently being designed to meet this requirement. As part of the effort, a spacecraft TOC analyzer was developed to demonstrate the technology in microgravity and mitigate risks associated with its use on station. This analyzer was successfully tested on Shuttle during the STS-81 mission as a risk mitigation experiment. A total of six ground-prepared test samples and two Mir potable water samples were analyzed in flight during the 10-day mission.
Technical Paper

Thermal Performance of the Radiator Advanced Demonstrator

1998-07-13
981672
Space suits for advanced missions have baselined radiators as the primary means of heat rejection in order to minimize consumables and logistics requirements. While radiators have been used in the active thermal control system for spacecraft since Gemini, the use of radiators in spacesuits introduces many unique requirements. These include the ability to reduce the amount of heat rejection when overcooling or overheating of the crew member is a concern. Overcooling can occur with low metabolic rates, cold environments or a combination of the two, and overheating can occur with high metabolic rates in a warm environment. The main goal of the Radiator Advanced Demonstrator (RAD) program is to build and fly a radiator on the current Extravehicular Mobility Unit (EMU) in order to verify thermal performance capabilities in actual flight conditions. The RAD incorporates an aluminum plate separated from the primary water panel with a silicone gasket.
Technical Paper

Biological and Physical-Chemical Life Support Systems Integration - Results of the Lunar Mars Life Support Phase III Test

1998-07-13
981708
The Lunar Mars Life Support Test Project (LMLSTP) Phase III test was the final test in a series of tests conducted to evaluate regenerative life support systems performance over increasingly longer durations. The Phase III test broke new ground for the U.S. Space Program by being the first test to look at integration of biological and physical-chemical systems for air, water and solid waste recovery for a crew of four for 91 days. Microbial bioreactors were used as the first step in the water recovery system (WRS). This biologically based WRS continuously recovered 100% of the water used by the crew consistent with NASA's strict potable standards. The air revitalization system was a combination of physical-chemical hardware and wheat plants which worked together to remove and reduce the crew's metabolically produced carbon dioxide and provide oxygen.
Technical Paper

Performance of Wheat for Air Revitalization and Food Production During the Lunar-Mars Life Support Test Project Phase III Test

1998-07-13
981704
The Lunar-Mars Life Support Systems Test Project's Phase iii Test utilized the Variable Pressure Growth Chamber to contribute to the air revitalization and food requirements of a crew of four for a period of 91 days. USU-Apogee wheat was planted and harvested using a staged approach to provide more uniform levels of air revitalization and a staggered production of grain. The wheat crop provided an average of 1 .1 person-equivalents per day of carbon dioxide removal for air revitalization over the 91 -day human test. Over 34 kg of grain was harvested. it was found that staged cropping required more intensive management of the nutrient solution than single batch cropping. it was also found that salts which were biologically recovered from the plant biomass were as effective as conventional reagent-grade salts for use in the hydroponic nutrient solution.
Technical Paper

The Advanced Space Suit Project - 97 Update

1998-07-13
981629
A technology project to produce a new space suit for planetary applications started in January of 1997, with a thermal vacuum test of the system, including a suited crew member, expected in the year 2000. This will be a progress report on the activities that occurred during the project's first year. The four year project is funded out of Code M at NASA Headquarters and is an effort to integrate the latest EVA technology into a maintainable modular design. The project will use as much off-the-shelf hardware as practical in an effort to lower development cost and decrease development time. Three pressurized garment configurations will be evaluated and two different portable life support systems will be built. The first year was primarily spent developing laboratories, bench-top working laboratory subsystems, analytical models, and the overall requirements and architecture of the system.
Technical Paper

Potential of a New Lunar Surface Radiator Concept for Hot Lunar Thermal Environments

2008-06-29
2008-01-1960
The optimum radiator configuration in hot lunar thermal environments is one in which the radiator is parallel to the ground and has no view to the hot lunar surface. However, typical spacecraft configurations have limited real estate available for top-mounted radiators, resulting in a desire to use the spacecraft's vertically oriented sides. Vertically oriented, flat panel radiators will have a large view factor to the lunar surface, and thus will be subjected to significant incident lunar infrared heat. Consequently, radiator fluid temperatures will need to exceed ~325 K (assuming standard spacecraft radiator optical properties) in order to provide positive heat rejection at lunar noon. Such temperatures are too high for crewed spacecraft applications in which a heat pump is to be avoided.
Technical Paper

Spacecraft Radiator Freeze Protection Using a Regenerative Heat Exchanger with Bypass Setpoint Temperature Control

2008-06-29
2008-01-2170
Spacecraft that must operate in cold environments at reduced heat load are at risk of radiator freezing. For a vehicle that lands at the Lunar South Pole, the design thermal environment is 215 K, but the radiator working fluid must also be kept from freezing during the 0 K sink of transit. A radiator bypass flow setpoint control design such as those used on the Space Shuttle Orbiter and ISS would require more than 30% of the design heat load to avoid radiator freezing during transit - even with a very low freezing point working fluid. By changing the traditional active thermal control system (ATCS) architecture to include a regenerating heat exchanger inboard of the radiator and using a regenerator bypass flow control valve to maintain system setpoint, the required minimum system heat load can be reduced by more than half. This gives the spacecraft much more flexibility in design and operation. The present work describes the regenerator bypass ATCS setpoint control methodology.
Technical Paper

Air Quality Standards for Space Vehicles and Habitats

2008-06-29
2008-01-2125
NASA has unique requirements for the development and application of air quality standards for human space flight. Such standards must take into account the continuous nature of exposures, the possibility of increased susceptibility of crewmembers to the adverse effects of air pollutants because of the stresses of space flight, and the recognition that rescue options may be severely limited in remote habitats. NASA has worked with the National Research Council Committee on Toxicology (NRCCOT) since the early 1990s to set and document appropriate standards. The process has evolved through 2 rounds. The first was to set standards for the space station era, and the second was to set standards for longer stays in space and update the original space station standards. The update was to be driven by new toxicological data and by new methods of risk assessment for predicting safe levels from available data. The last phase of this effort has been completed.
Technical Paper

Immobilized Antimicrobials for the Enhanced Control of Microbial Contamination

2003-07-07
2003-01-2405
The active control of problematic microbial populations aboard spacecraft, and within future lunar and planetary habitats is a fundamental Advanced Life Support (ALS) requirement to ensure the long-term protection of crewmembers from infectious disease, and to shield materials and equipment from biofouling and biodegradation. The development of effective antimicrobial coatings and materials is an important first step towards achieving this goal and was the focus of our research. A variety of materials were coated with antibacterial and antifungal agents using covalent linkages. Substrates included both granular media and materials of construction. Granular media may be employed to reduce the number of viable microorganisms within flowing aqueous streams, to inhibit the colonization and formation of biofilms within piping, tubing and instrumentation, and to amplify the biocidal activity of low aqueous iodine concentrations.
Technical Paper

Validation of the Volatile Organic Analyzer (VOA) Aboard the International Space Station

2003-07-07
2003-01-2646
The Volatile organic analyzer (VOA) has been operated on the International Space Station (ISS) throughout 2002, but only periodically due to software interface problems. This instrument provides near real-time data on the concentration of target volatile organic contaminants in the spacecraft atmosphere. During 2002, a plan to validate the VOA operation on orbit was implemented using an operational scheme to circumvent the software issues. This plan encompassed simultaneous VOA sample runs and collection of archival air samples in grab sample containers (GSC). Agreement between the results from GSC and VOA samples is needed to validate the VOA for operational use. This paper will present the VOA validation data acquired through November 2002.
Technical Paper

The Volatile Organic Analyzer (VOA) Aboard the International Space Station

2002-07-15
2002-01-2407
The Volatile Organic Analyzer (VOA) was launched to the International Space Station (ISS) aboard STS-105 in August 2001. This instrument has provided the first near real-time data on the concentrations of trace contaminants in a spacecraft atmosphere. The VOA data will be used to assess air quality on ISS in nominal and contingency situations. Until the VOA presence on ISS, archival samples that were analyzed weeks if not months after the flight were the only means to obtain spacecraft air quality data on volatile organic compounds (VOCs). Especially in contingency situations, real-time data is important to help direct crew response and measure the effectiveness of decontamination efforts. The development and certification of the VOA has been chronicled in past ICES papers. This paper will discuss the preparation of the VOA for ISS operations. Also, examples of VOA data acquired during flight will be presented to demonstrate the value of the instrument in assessing the ISS environment.
Technical Paper

The Portable Monitor for Measuring Combustion Products Aboard the International Space Station

2002-07-15
2002-01-2298
The Toxicology Laboratory at Johnson Space Center (JSC) had provided the combustion products analyzer (CPA) since the early 1990s to monitor the spacecraft atmosphere in real time if a thermodegradation event occurred aboard the Shuttle. However, as the operation of the International Space Station (ISS) grew near, an improved CPA was sought that would include a carbon monoxide sensor that did not have a cross-sensitivity to hydrogen. The Compound Specific Analyzer-Combustion Products (CSA-CP) was developed for use on the International Space Station (ISS). The CSA-CP measures three hazardous gases, carbon monoxide, hydrogen cyanide, and hydrogen chloride, as well as oxygen. The levels of these compounds in the atmosphere following a thermodegradation event serve as markers to determine air quality. The first permanent ISS crew performed the CSA-CP checkout operations and collected baseline data shortly after arrival aboard the ISS in December 2000.
Technical Paper

Regenerable Biocide Delivery Unit

1991-07-01
911406
The Microbial Check Valve (MCV) is used on the Space Shuttle to impart an iodine residual to the drinking water to maintain microbial control. Approximately twenty MCV locations have been identified in the Space Station Freedom design, each with a 90 day life. This translates to 2400 replacement units in 30 years of operation. An in situ regeneration concept has been demonstrated that will reduce this replacement requirement to less than 300 units based on data to date and potentially fewer as further regenerations are accomplished. A totally automated system will result in significant savings in crew time, resupply requirements and replacement costs. An additional feature of the device is the ability to provide a concentrated biocide source (200 mg/liter of I2) that can be used to superiodinate systems routinely or after a microbial upset. This program was accomplished under NASA Contract Number NAS9-18113.
Technical Paper

Setting Spacecraft Maximum Allowable Concentrations for 1 hour or 24 hour Contingency Exposures to Airborne Chemicals

1992-07-01
921410
Since the early years of the manned space program, NASA has developed and used exposure limits called Spacecraft Maximum Allowable Concentrations (SMACs) to help protect astronauts from airborne toxicants. Most of these SMACS are based on an exposure duration of 7 days, since this is the duration of a “typical” mission. A set of “contingency SMACs” is also being developed for scenarios involving brief (1-hour or 24- hour) exposures to relatively high levels of airborne toxicants from event-related “contingency” releases of contaminants. The emergency nature of contingency exposures dictates the use of different criteria for setting exposure limits. The NASA JSC Toxicology Group recently began a program to document the rationales used to set new SMACs and plans to review the older, 7-day SMACs. In cooperation with the National Research Council's Committee on Toxicology, a standard procedure has been developed for researching, setting, and documenting SMAC values.
Technical Paper

Solid Phase Extraction of Polar Compounds in Water

1997-07-01
972465
The Water and Food Analytical Laboratory, at the Johnson Space Center is developing an alternative to EPA Method 625 for analyzing semivolatile organic compounds in water. The current EPA method uses liquid-liquid extraction. The alternative method being developed differs in the sample preparation phase by replacing gravity-dependent liquid-liquid extraction with solid phase extraction (SPE). The ultimate goal is to incorporate the optimum SPE conditions into an automated sample preparation process. The method shows promise with regard to anticipated polar compounds. Fourteen SPE resins and nine elution solvents were compared. For typical analytes encountered by our laboratory, a styrene-divinylbenzene SPE resin and an elution solvent mixture of methylene chloride and ethyl ether were found to give the highest extraction recoveries. A study is in progress to remove water from the extracts before GC/MS analysis.
Technical Paper

Space Station Radiation Dosimetry and Health Risk Assessment

1993-07-01
932212
Current dosimetric practices do not provide comprehensive classification of high-energy charged particle radiation, so that the ability to adequately project health risk to astronaut crews is limited. To address this shortcoming in dosimetry for Space Station missions, a new generation of active radiation monitors is being developed to supplement traditional dosimetry. One active monitor is a Tissue Equivalent Proportional Counter (TEPC) to measure the linear energy transfer (LET) spectrum of space radiation. Two versions of a second type of active monitor, the Charged Particle Directional Spectrometer (CPDS), will be deployed, one internal and one external to the Station. The CPDS consists of a stack of lithium-drifted silicon detectors used to classify the radiation by particle charge and energy. The comprehensive data set obtained by using the TEPC and the CPDS permits significant improvement in assessing crew radiation exposures.
X