Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Octane Response of Premium-Recommended Vehicles

2013-04-08
2013-01-0883
A higher octane quality fuel used in premium-recommended vehicles has the potential for delivering better acceleration and power. Octane number is a standard measure for the anti-knock quality of a gasoline fuel. A higher octane number fuel can withstand more compression before detonation (or knock). Higher compression ratios directly correlate with engine power and thermodynamic efficiency. Hence engines that are designed for higher octane or premium grade fuels should typically develop higher power by extracting more from the calorific value of the fuel. However, in the case of premium-recommended vehicle models that are designed to run even on lower octane fuels, the extent of performance benefits of using premium grade higher octane fuels can be deciphered via vehicle testing. In this regard, two gasoline fuels with anti-knock index values (AKI) of 87 and 91 respectively were compared in five premium-recommended vehicles for acceleration and power benefits.
Technical Paper

Achieving Fast Catalyst Light-Off from a Heavy-Duty Stoichiometric Natural Gas Engine Capable of 0.02 g/bhp-hr NOX Emissions

2018-04-03
2018-01-1136
Recently conducted work has been funded by the California Air Resources Board (CARB) to explore the feasibility of achieving 0.02 g/bhp-hr NOX emissions for heavy-duty on-road engines. In addition to NOX emissions, greenhouse gas (GHG), CO2 and methane emissions regulations from heavy-duty engines are also becoming more stringent. To achieve low cold-start NOX and methane emissions, the exhaust aftertreatment must be brought up to temperature quickly while keeping proper air-fuel ratio control; however, a balance between catalyst light-off and fuel penalty must be addressed to meet future CO2 emissions regulations. This paper details the work executed to improve catalyst light-off for a natural gas engine with a close-coupled and an underfloor three-way-catalyst while meeting an FTP NOX emission target of 0.02 g/bhp-hr and minimizing any fuel penalty.
Technical Paper

Particulate Mass Reduction and Clean-up of DISI Injector Deposits via Novel Fuels Additive Technology

2014-10-13
2014-01-2847
Particulate mass (PM) emissions from DISI engines can be reduced via fuels additive technology that facilitates injector deposit clean-up. A significant drawback of DISI engines is that they can have higher particulate matter emissions than PFI gasoline engines. Soot formation in general is dependent on the air-fuel ratio, combustion chamber temperature and the chemical structure and thermo-physical properties of the fuel. In this regard, PM emissions and DISI injector deposit clean-up were studied in three identical high sales-volume vehicles. The tests compared the effects of a fuel (Fuel A) containing a market generic additive at lowest additive concentration (LAC) against a fuel formulated with a novel additive technology (Fuel B). The fuels compared had an anti-knock index value of 87 containing up to 10% ethanol. The vehicles were run on Fuel A for 20,000 miles followed by 5,000 miles on Fuel B using a chassis dynamometer.
X