Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Development of a Novel Device to Improve Urea Evaporation, Mixing and Distribution to Enhance SCR Performance

2010-04-12
2010-01-1185
A novel urea evaporation and mixing device has been developed to improve the overall performance of a urea-SCR system. The device was tested with a MY2007 Cummins ISB 6.7L diesel engine equipped with an SCR aftertreatment system. Test results show that the device effectively improved the overall NO conversion efficiency of the SCR catalyst over both steady-state and transient engine operating conditions, while NH₃ slip from the catalyst decreased.
Technical Paper

Simultaneous Reduction of PM, HC, CO and NOx Emissions from a GDI Engine

2010-04-12
2010-01-0365
Particulate Matter (PM) emissions from gasoline direct injection (GDI) engines are becoming a concern and will be limited by future emissions regulations, such as the upcoming Euro 6 legislation. Therefore, PM control from a GDI engine will be required in addition to effective reduction of HC, CO and NOx emissions. Three different integrated aftertreatment systems were developed to simultaneously reduce PM, HC, CO and NOx emissions from a preproduction Ford 3.5L EcoBoost GTDI engine, with PM reduction as the major focus. PM reduction efficiencies were calculated based on the measurements of PM mass and solid particle number. Test results show that tradeoffs exist in the design of aftertreatment systems to significantly reduce PM emissions from a GDI engine.
Technical Paper

Updating China Heavy-Duty On-Road Diesel Emission Regulations

2012-04-16
2012-01-0367
With the rapid expansion of the automotive market in China, air quality in the major cities has become a severe concern. Great efforts have been made in introducing new emission regulations; however, fuel and lubricant qualities, emissions aftertreatment system durability and in-use compliance to the emissions regulations still require significant improvement. China follows the European Union (EU) emission regulations in general, but different levels of standards exist. This paper gives a comprehensive overview of the current and near-future heavy-duty diesel emission regulations, as well as fuel and lubricant specifications.
Technical Paper

Methodologies to Control DPF Uncontrolled Regenerations

2006-04-03
2006-01-1090
Diesel particulate filters (DPF) have been shown to effectively reduce particulate emissions from diesel engines. However, uncontrolled DPF regeneration can easily damage the DPF. In this paper, three different types of uncontrolled DPF regeneration are defined. They are: Type A: Uncontrolled high initial exotherm at the start of DPF regeneration, Type B: “Runaway” or uncontrolled regeneration, which takes place when the engine goes to idle during normal DPF regeneration, and Type C: Uneven soot distribution causing excess thermal stress during normal DPF regeneration. In this paper, different control strategies are developed for each of the three types of uncontrolled DPF regenerations. These control strategies include SOF control, exhaust flow pattern improvement, as well as EGR control through intake throttling and A/F ratio control.
X