Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Modeling of Engine Warm-Up with Integration of Vehicle and Engine Cycle Simulation

2001-05-14
2001-01-1697
The incorporation of a detailed engine process calculation that takes into account thermal behavior of the engine and exhaust system is essential for a realistic simulation of transient vehicle operation. This is the only possible way to have a precise preliminary calculation of fuel consumption and emissions. Therefore, a comprehensive thermal network of the engine based on the lumped capacity method has been developed. The model allows the computation of component temperatures in steady state operation as well as in transient engine studies, e.g. investigations of engine warm-up. The model is integrated in a co-simulation environment consisting of a detailed vehicle and engine cycle simulation code. The paper describes the procedure of the co-simulation and presents several examples of warm-up simulations.
Technical Paper

ULEV Potential of a DI/TCI Diesel Passenger Car Engine Operated on Dimethyl Ether

1995-12-01
952754
The paper describes a feasibility test program on a 2 liter, 4 cylinder DI/TCI passenger car engine operated on the new alternative fuel Dimethyl Ether (DME, CH3 - O - CH3) with the aim of demonstrating its potential of meeting ULEV emissions (0.2 g/mi NOx in the FTP 75 test cycle) when installed in a full size passenger car. Special attention is drawn to the fuel injection equipment (FIE) as well as combustion system requirements towards the reduction of NOx and combustion noise while keeping energetic fuel consumption at the level of the baseline DI/TCI diesel engine. FIE and combustion system parameters were optimized on the steady state dynamometer by variation of a number of parameters, such as rate of injection, number of nozzle holes, compression ratio, piston bowl shape and exhaust gas recirculation.
Technical Paper

Automated Model-Based Calibration for Drivability Using a Virtual Engine Test Cell

2015-04-14
2015-01-1628
Increasing powertrain complexity and the growing number of vehicle variants are putting a strain on current calibration development processes. This is particularly challenging for vehicle drivability calibration, which is traditionally completed late in the development cycle, only after mature vehicle hardware is available. Model-based calibration enables a shift in development tasks from the real world to the virtual world, allowing for increased system robustness while reducing development costs and time. A unique approach for drivability calibration was developed by incorporating drivability analysis software with online optimization software into a virtual engine test cell environment. Real-time, physics-based engine and vehicle simulation models were coupled with real engine controller hardware and software to execute automated drivability calibration within this environment.
Technical Paper

Integrated Toolchain for Powertrain Optimization for Indian Commercial Vehicles

2015-01-14
2015-26-0032
Best fuel efficiency is one of the core requirements for commercial vehicles in India. Consequently it is a central challenge for commercial vehicle OEMs to optimize the entire powertrain, hence match engine, transmission and rear axle specifications best to the defined application. The very specific real world driving conditions in India (e.g. traffic situations, road conditions, driver behavior, etc.) and the large number of possible commercial powertrain combinations request an efficient and effective development methodology. This paper presents a methodology and tool chain to specify and develop commercial powertrains in a most efficient and effective way. The methodology is based on the measurement of real world driving scenarios, identification of representative Real World Driving Profiles and vehicle system simulation which allows extended analysis of the road topography, the traffic situation as well as the driver behavior.
Technical Paper

Simulation Aided Process for Developing Powertrains

2000-12-01
2000-01-3161
For the development of complex control algorithms and strategies the engine and powertrain test bed offers a number of advantages over the development in the prototype vehicle. The paper discusses how state-of-the-art simulation techniques can contribute to a continuous development process, which is based upon offline simulation using hardware in the loop, the utilization of modern test bed technology up to vehicle adjustment. The integration of hardware-in-the-loop testing together with vehicle and transmission simulation on the testbed allows to speed up the optimization of fuel consumption, emissions and driveability in an early stage in the development process. The available software tools are presented and application examples are given.
Technical Paper

Comparison of CO2 Emission Levels for Internal Combustion Engine and Fuel Cell Automotive Propulsion Systems

2001-11-12
2001-01-3751
The well-to-wheel CO2 emissions and energy use of internal combustion engines (diesel and gasoline) are compared to fuel cell automotive propulsion systems. The fuel cell technologies investigated are polymer electrolyte fuel cell (PEFC), alkaline fuel cell (AFC) and solid oxide fuel cell (SOFC). The fuels are assumed to be produced from either crude oil or natural gas. The comparison is based on driving cycle simulations of a mid-class passenger car with an inertia test weight of 1350 kg. The study shows that the optimized diesel drive train (downsized mated to an integrated starter generator) achieves the best overall energy efficiency. The lowest CO2 emissions are produced by compressed natural gas (CNG) vehicles. Fuel cell propulsion systems achieve similar or even better CO2 emission values under hot start conditions but suffer from high energy input required during warm-up.
Technical Paper

Overview of the European “Particulates” Project on the Characterization of Exhaust Particulate Emissions from Road Vehicles: Results for Heavy Duty Engines

2004-06-08
2004-01-1986
This paper presents an overview of the results on heavy duty engines collected in the “PARTICULATES” project, which aimed at the characterization of exhaust particle emissions from road vehicles. The same exhaust gas sampling and measurement system as employed for the measurements on light duty vehicles [1] was used. Measurements were made in three labs to evaluate a wide range of particulate properties with a range of heavy duty engines and fuels. The measured properties included particle number, with focus separately on nucleation mode and solid particles, particle active surface and total mass. The sample consisted of 10 engines, ranging from Euro-I to prototype Euro-V technologies. The same core diesel fuels were used as in the light duty programme, mainly differentiated with respect to their sulphur content. Additional fuels were tested by some partners to extend the knowledge base.
Technical Paper

Virtual Optimization of Vehicle and Powertrain Parameters with Consideration of Human Factors

2005-04-11
2005-01-1945
The rapidly growing complexity and the growing cross linking of powertrain components leads to longer development times, especially in the vehicle calibration process. The number of systems which need to be fitted to each other and the number of parameters to be calibrated in the particular systems are increasing tremendously. The extensive use of simulation promises to reduce the calibration effort by providing pre-optimized parameter sets. This paper describes a new simulation methodology by the interlinking of advanced vehicle simulation and evaluation tools, in particular the AVL-tools CRUISE, VSM and DRIVE. This methodology allows to semi automatically pre-optimize powertrain and vehicle parameters before hardware is involved. So far the pre-calibration of vehicle and powertrain parameters by simulation was not satisfying because of the missing of a reliable evaluation tool for the produced simulation results.
Technical Paper

Analysis of Transient Drive Cycles using CRUISE-BOOST Co-Simulation Techniques

2002-03-04
2002-01-0627
In order to improve the accuracy of vehicle simulation under transient cycle conditions and thus predict performance and fuel consumption, consideration of the complete system engine/drivetrain/vehicle is necessary. The coupling of otherwise independent simulation programs is therefore necessary for the vehicle and engine. The description of thermally transient processes enables the calculation of the heat balance of the engine, which in turn enables the simulation of warming up operation. Through consideration of the engine warming up process, the quality of the prediction of fuel consumption and emissions is improved. The combination of the simulation programs CRUISE and BOOST to determine the engine heat balance has proven to be successful for the analysis of transient drive cycles.
Journal Article

Compact Engine Architecture for Best Fuel Efficiency and High Performance - Challenge or Contradiction

2011-11-08
2011-32-0595
The world of automotive engineering shows a clear direction for upcoming development trends. Stringent fleet average fuel consumption targets and CO2 penalties as well as rising fuel prices and the consumer demand to lower operating costs increases the engineering efforts to optimize fuel economy. Passenger car engines have the benefit of higher degree of technology which can be utilized to reach the challenging targets. Variable valve timing, downsizing and turbo charging, direct gasoline injection, highly sophisticated operating strategies and even more electrification are already common technologies in the automotive industry but can not be directly carried over into a motorcycle application. The major differences like very small packaging space, higher rated speeds, higher power density in combination with lower production numbers and product costs do not allow implementation such high of degree of advanced technology into small-engine applications.
X