Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Transient Simulation of DGI Engine Injector with Needle Movement

2002-10-21
2002-01-2663
Utilization of direct injection systems is one of the most promising technologies for fuel economy improvement for SI engine powered passenger cars. Engine performance is essentially influenced by the characteristics of the injection equipment. This paper will present CFD analyses of a swirl type GDI injector carried out with the Multiphase Module of AVL's FIRE/SWIFT CFD code. The simulations considered three phases (liquid fuel, fuel vapor, air) and mesh movement. Thus the transient behavior of the injector can be observed. The flow phenomena known from measurement and shown by previous simulation work [2, 7, 10, 11] were reproduced. In particular the simulations shown in this paper could explain the cause for the outstanding atomization characteristics of the swirl type injector, which are caused by cavitation in the nozzle hole.
Technical Paper

Analytical Study of the Cavitation on a Vibrating Wall

2005-04-11
2005-01-1914
Cavitation induced cylinder liner erosion can be a significant durability problem in high power density diesel engines. It is typically discovered in the field, thus causing costly redesigns. The application of a predictive simulation to analyze the liner cavitation process upfront could identify the problem early on and enable significant savings. Hence, this work investigates the ability of the computational fluid dynamics (CFD) multiphase flow simulation tool to handle vibration induced cavitation. A flow of liquid through a U-shaped duct is analyzed, where a middle segment of the duct is set to vibrate in a manner resembling vibration of the cooling jacket walls in an internal combustion engine. Velocity, pressure and vapor concentration fields are tracked for two cases, distinguished by different frequencies of duct wall vibration.
X