Refine Your Search

Topic

Author

Search Results

Journal Article

Realization of Ground Effects on Snowmobile Pass-by Noise Testing

2009-05-19
2009-01-2229
Noise concerns regarding snowmobiles have increased in the recent past. Current standards, such as SAE J192 are used as guidelines for government agencies and manufacturers to regulate noise emissions for all manufactured snowmobiles. Unfortunately, the test standards available today produce results with variability that is much higher than desired. The most significant contributor to the variation in noise measurements is the test surface. The test surfaces can either be snow or grass and affects the measurement in two very distinct ways: sound propagation from the source to the receiver and the operational behavior of the snowmobile. Data is presented for a known sound pressure speaker source and different snowmobiles on various test days and test surfaces. Relationships are shown between the behavior of the sound propagation and track interaction to the ground with the pass-by noise measurements.
Technical Paper

Liftgate Structure Optimization to Minimize Contribution to Low Frequency Interior Noise

2020-04-14
2020-01-1264
This paper presents the design development of a SUV liftgate with the intention of minimizing low frequency noise. Structure topology optimization techniques were applied both to liftgate and body FEA models to reduce radiated power from the liftgate inner surface. Topology results are interpreted into structural changes to the original liftgate and body design. Favorable results of equivalent radiated power (ERP) performance with reduced cost and mass is shown compared to baseline liftgate and baseline with tuned vibration absorber (TVA). This simulation includes finite element modeling of coupled fluid/structure interaction between the interior air cavity volume and liftgate structure. In addition to ERP minimization, multi-model optimization (MMO) was used on separate models simultaneously to preserve liftgate structural performance for several customer usage load cases.
Journal Article

Lockheed Martin Low-Speed Wind Tunnel Acoustic Upgrade

2018-04-03
2018-01-0749
The Lockheed Martin Low-Speed Wind Tunnel (LSWT) is a closed-return wind tunnel with two solid-wall test sections. This facility originally entered into service in 1967 for aerodynamic research of aircraft in low-speed and vertical/short take-off and landing (V/STOL) flight. Since this time, the client base has evolved to include a significant level of automotive aerodynamic testing, and the needs of the automotive clientele have progressed to include acoustic testing capability. The LSWT was therefore acoustically upgraded in 2016 to reduce background noise levels and to minimize acoustic reflections within the low-speed test section (LSTS). The acoustic upgrade involved detailed analysis, design, specification, and installation of acoustically treated wall surfaces and turning vanes in the circuit as well as low self-noise acoustic wall and ceiling treatment in the solid-wall LSTS.
Journal Article

Revised ISO 10844 Test Surface: Technical Principles

2011-05-17
2011-01-1607
ISO has revised the 10844 International Standard for test surfaces used in measurement of exterior vehicle and tire noise emission. The revision has a goal to reduce the track to track sound level variation presently observed by 50%, without changing the mean value. ISO has incorporated improved texture measurement procedures, improved acoustic absorption measurement procedures, and has added measurement procedures for track roughness. In addition, specifications for texture, absorption, roughness, planarity, and asphalt mix were revised or added to recognize improved technical methods and to achieve the goal of variation reduction. The specification development was supported by a construction program where four candidate ISO 10844 tracks were constructed in Japan, France, and the US to verify the technical principles and to validate construction process capability. This paper will address the technical changes and reasons for these changes in the revised ISO 10844.
Technical Paper

Application of Signature Analysis and Operating Deflection Shapes to Identify Interior Noise Sources in an Excavator

2007-05-15
2007-01-2427
The objective of this study was to identify and gain an understanding of the origins of noise in a commercial excavator cab. This paper presents the results of two different tests that were used to characterize the vibration and acoustic characteristics of the excavator cab. The first test was done in an effort to characterize the vibration properties of the cab panels and their associated contribution to the noise level inside the cab. The second set, of tests, was designed to address the contribution of the external airborne noise produced by the engine and hydraulic pump to the overall interior noise. This paper describes the test procedures used to obtain the data for the signature analysis, operational deflection shapes (ODS), and sound diagnosis analysis. It also contains a discussion of the analysis results and an inside look into the possible contributors of key frequencies to the interior noise in the excavator cab.
Technical Paper

Root Cause Identification and Methods of Reducing Rear Window Buffeting Noise

2007-05-15
2007-01-2402
Rear Window Buffeting (RWB) is the low-frequency, high amplitude, sound that occurs in many 4-door vehicles when driven 30-70 mph with one rear window lowered. The goal of this paper is to demonstrate that the mechanisms of RWB are similar to that of sun roof buffeting and to describe the results of several actions suspected in contributing to the severity of RWB. Finally, the results of several experiments are discussed that may lend insight into ways to reduce the severity of this event. A detailed examination of the side airflow patterns of a small Sport Utility Vehicle (SUV) shows these criteria exist on a small SUV, and experiments to modify the SUV airflow pattern to reduce RWB are performed with varying degrees of success. Based on the results of these experiments, design actions are recommended that may result in the reduction of RWB.
Technical Paper

Development and Validation of an Acoustic Encapsulation to Reduce Diesel Engine Noise

2007-05-15
2007-01-2375
This paper describes a study to demonstrate the feasibility of developing an acoustic encapsulation to reduce airborne noise from a commercial diesel engine. First, the various sources of noise from the engine were identified using Nearfield Acoustical Holography (NAH). Detailed NAH measurements were conducted on the four sides of the engine in an engine test cell. The main sources of noise from the engine were ranked and identified within the frequency ranges of interest. Experimental modal analysis was conducted on the oil pan and front cover plate of the engine to reveal correlations of structural vibration results with the data from the NAH. The second phase of the study involved the design and fabrication of the acoustical encapsulation (noise covers) for the engine in a test cell to satisfy the requirements of space, cost and performance constraints. The acoustical materials for the enclosure were selected to meet the frequency and temperature ranges of interest.
Technical Paper

Analytical Simulation of the Effects of Noise Control Treatments on an Excavator Cab using Statistical Energy Analysis

2007-05-15
2007-01-2315
The objective of this study was to utilize Statistical Energy Analysis (SEA) to simulate the effects of a variety of noise control treatments on the interior sound pressure level (SPL) of a commercial excavator cab. In addition, the effects of leaks on the SPL of the excavator cab were also investigated. This project was conducted along with various tests that were used to determine the inputs needed to accurately represent the loads that the cab experienced during operation. This paper explains the how the model was constructed, how the loads were applied to the model, the results that were obtained from application of treatments, and a study of the effects of introducing leaks to the cab structure in the SEA model.
Technical Paper

Determination of Source Contribution in Snowmobile Pass-by Noise Testing

2009-05-19
2009-01-2228
As noise concerns for snowmobiles become of greater interest for governing bodies, standards such as SAE J192 are implemented for regulation. Specific to this pass-by noise standard, and unlike many other pass-by tests, multiple non-standardized test surfaces are allowed to be used. Manufacturers must understand how the machines behave during these tests to know how to best improve the measured noise levels. Data is presented that identifies the contributions of different sources for different snowmobiles on various test surface conditions. Adaptive resampling for Doppler removal, frequency response functions and order tracking methods are implemented in order to best understand what components affect the overall measurement during the pass-by noise test.
Technical Paper

Modeling Interior Noise in Off-Highway Trucks using Statistical Energy Analysis

2009-05-19
2009-01-2239
The objective of this project was to model and study the interior noise in an Off-Highway Truck cab using Statistical Energy Analysis (SEA). The analysis was performed using two different modeling techniques. In the first method, the structural members of the cab were modeled along with the panels and the interior cavity. In the second method, the structural members were not modeled and only the acoustic cavity and panels were modeled. Comparison was done between the model with structural members and without structural members to evaluate the necessity of modeling the structure. Correlation between model prediction of interior sound pressure and test data was performed for eight different load conditions. Power contribution analysis was performed to find dominant paths and 1/3rd octave band frequencies.
Technical Paper

SAE Low-Frequency Brake Noise Test Procedure

2010-10-10
2010-01-1696
This paper presents the work of the SAE Brake NVH Standards Committee in developing a draft Low-Frequency Brake Noise Test Procedure. The goal of the procedure is to be able to accurately measure noise issues in the frequency range below 900 Hz using a conventional shaft brake noise dynamometer. The tests conducted while evaluating alternative test protocols will be discussed and examined in detail. The unique issues encountered in developing a suitable test procedure for low-frequency noise will be discussed, and the results of tests using both shaft brake dynamometers and chassis dynamometers will be described. The current draft procedure incorporating the knowledge gained from this development effort will be described in detail and conclusions as to its applicability will also be presented
Technical Paper

Design and Testing of a Single Cylinder, Turbocharged, Four-Stroke Snowmobile with E.F.I. and Catalytic Exhaust Treatment

2002-10-21
2002-01-2761
The successful implementation of a clean, quiet, four-stroke engine into an existing snowmobile chassis has been achieved. The snowmobile is easy to start, easy to drive, and environmentally friendly. The following paper describes the conversion process in detail with actual dynamometer and field test data. The vehicle is partially compliant with the proposed 2010 EPA snowmobile emissions regulations and passes an independently conducted, 74 dBA, full throttle pass-by noise test. The vehicle addresses the environmental issues surrounding snowmobiles and remains economical, with an approximate cost of $6,345.
Technical Paper

Utilizing a Tracked 3-Dimensional Acoustic Probe in the Development of an Automotive Front-of-Dash

2017-06-05
2017-01-1869
During the development of an automotive acoustic package, valuable information can be gained by visualizing the acoustic energy flow through the Front-of-Dash (FOD) when a sound source is placed in the engine compartment. Two of the commonly used methods for generating the visual map of the acoustic field include Sound Intensity measurements and array technologies. An alternative method is to use a tracked 3-dimensional acoustic probe to scan and visualize the FOD in real-time when the sound source is injecting noise into the engine compartment. The scan is used to focus the development of the FOD acoustic package on the weakest areas by identifying acoustic leaks and locations with low Transmission Loss. This paper provides a brief discussion of the capabilities of the tracked 3-D acoustic probe, and presents examples of the implementation of the probe during the development of the FOD acoustic package for two mid-sized sedans.
Technical Paper

Traditional and Electronic Solutions to Mitigate Electrified Vehicle Driveline Noises

2017-06-05
2017-01-1755
Hybrid powertrain vehicles inherently create discontinuous sounds during operation. The discontinuous noise created from the electrical motors during transition states are undesirable since they can create tones that do not correlate with the dynamics of the vehicle. The audible level of these motor whines and discontinuous tones can be reduced via common noise abatement techniques or reducing the amount of regeneration braking. One electronic solution which does not affect mass or fuel economy is Masking Sound Enhancement (MSE). MSE is an algorithm that uses the infotainment system to mask the naturally occurring discontinuous hybrid drive unit and driveline tones. MSE enables a variety of benefits, such as more aggressive regenerative braking strategies which yield higher levels of fuel economy and results in a more pleasing interior vehicle powertrain sound. This paper will discuss the techniques and signals used to implement MSE in a hybrid powertrain equipped vehicle.
Technical Paper

Damping Mass Effects on Panel Sound Transmission Loss

2011-05-17
2011-01-1633
The primary function of damping treatment on a vibrating panel in a vehicle is to reduce vibration levels or radiated sound power by the dissipation of energy. However, in automotive applications the mass effects of damping materials should not be ignored, especially with regard to airborne noise performance. In this paper, a Finite Element-Statistical Energy Analysis (FE-SEA) hybrid analysis is used to evaluate the mass effects of applied damping materials on Sound Transmission Loss (STL). The analysis takes into consideration effects on both the elastic properties and modal mass of the panel. It is shown that while uniformly distributing the mass of the damping material over the panel generally over-estimate the mass effects on STL, an area weighting approach underestimates the effects. Results are confirmed by laboratory testing. A nomogram is generated to show the total effect of the mass of the damping material on STL.
Technical Paper

An Efficient Modeling Approach for Mid-frequency Trim Effects

2011-05-17
2011-01-1719
In traditional FE based structure-borne noise analysis, interior trims are normally modeled as lump masses in the FE structure model and acoustic specific impedance of the trim is assigned to the FE acoustics model when necessary. This simplification has proven to be effective and sufficient for low frequency analysis. However, as the frequency goes into the mid-frequency range, the elastic behavior of the trim may impose some effects on the structural and acoustic responses. The approach described in this paper is based on the structural FE and acoustic SEA coupling analysis developed by ESI, aiming to improve the modeling efficiency for a possible quick turnaround in virtual assessments.
Technical Paper

Hydraulically Damped Rubber Body Mounts with High Lateral Rate for Improved Vehicle Noise, Vibration and Ride Qualities

2013-05-13
2013-01-1906
In today's competitive market, noise and vibration are among the most important parameters that impact the success of a vehicle. In body-on-frame construction vehicles, elastomeric body mounts play a major role in isolating the passenger compartment from road noise, harshness, shake, and other vibrations in the chassis as well as improving ride quality across a wide frequency range. This paper describes the work carried out to design a fluid filled mount with high lateral stiffness that can alter the perceived Noise, Vibration and Harshness (NVH) performance of current production body-on-frame trucks. It was found that the quietness and ride qualities can be significantly improved by positioning the glycol-filled mounts at the anti-node of the frame first vertical bending mode; under the C-pillar intersection with the frame. The performance of mounts in this area is known to be critical to ride quality.
Technical Paper

Windowed Selected Moving Autocorrelation (WSMA), Tri-Correlation (TriC), and Misfire Detection

2005-04-11
2005-01-0647
In this paper, two correlations, Windowed Selected Moving Autocorrelation (WSMA) and Tri-Correlation (TriC), are introduced and discussed. The WSMA is simpler than the conventional autocorrelation. WSMA uses less data points to obtain useful signal content at desired frequencies. The computational requirement is therefore reduced compared to the conventional autocorrelation. The simplified TriC provides improved signal to noise separation capability than WSMA does while still requiring reduced computational effort compared to the standard autocorrelation. Very often, computation resource limitation exists for real-time applications. Therefore, the WSMA and TriC offer more opportunities for real-time monitor and feedback control applications in the frequency domain due to their high efficiencies. As an example, applications in internal combustion (IC) engine misfire detection are presented. Simulation and vehicle test results are also presented in this paper.
Technical Paper

Vehicle Noise Sensitivity to Different Levels of Taper Wheel Bearing Brinell Damage for Body-on-Frame Passenger Vehicles

2022-09-19
2022-01-1192
This paper reviews the relationship between taper wheel bearing damage and vehicle noise and vibration for a body-on-frame pickup truck and a body-on-frame SUV. In addition to understanding how the different levels of bearing damage relate to vehicle noise, it also discusses the level of noise versus the damaged bearing’s position in the vehicle. For this study, the wheel bearing supplier provided front and rear bearings with various amounts of Brinell damage to the bearing raceways. The different bearings were evaluated subjectively for noise in the vehicle. After vehicle testing, the bearing raceway Brinell depths were measured to correlate the level of bearing damage to vehicle noise. The study shows the relationship between bearing Brinell dent depth and vehicle noise for body-on-frame light trucks and SUVs. The noise was most apparent in vehicles between 45 and 60 mph. For bearings with moderate levels of damage, steering inputs were required to hear noise.
Technical Paper

Practical Uses for Road Noise Cancellation

2021-08-31
2021-01-1018
Today’s automotive customers have come to expect luxury and electric vehicles to be quiet and refined pieces of machinery. As customers have come to expect powertrain cancellation in most vehicles today, they are also increasingly looking for a reduction in road noise to improve their overall perception of luxury and electric vehicles. While the field of noise cancellation is ever expanding, several auto makers are exploring the possibility of introducing a real time Road Noise Cancellation (RNC) system to meet these customer expectations. An RNC system can be integrated into the vehicle infotainment system and be utilized to either noticeably reduce or shape the vehicle noise floor. This paper will look at the current traditional Noise and Vibration (N&V) methods of reducing road noise and then also the benefits associated with actively controlling the amount of road noise using an RNC system.
X