Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Initial Results from a Hybrid Electro-Thermal Electro-Mechanical Simulation Tool (HETEMS)

Low power ice protection systems are an important research area that is highlighted in the EU Clean Sky programme. In this paper an icing wind tunnel test of a full-scale wing incorporating both an electro-thermal and a hybrid electro-thermal electro-mechanical system is described. A description of a software tool to analyse both systems as full 3D models is also given. Preliminary comparisons of test data and prediction are shown both for the electro-thermal system and the hybrid system. Initial comparisons show a reasonable correlation in the main with recommendations for a structure tear-down to identify exact internal transducer locations. Recommendations are also made with regard to undertaking tests to determine a more consistent set of mechanical failure properties of ice. Future work in the development of the tool is also discussed.
Technical Paper

Non-Spherical Particle Trajectory Modelling for Ice Crystal Conditions

Aircraft icing is a significant issue for aviation safety. In this paper, recent developments for calculating the trajectory of non-spherical particles are used to determine the trajectory and impingement of ice crystals in aircraft icing scenarios. Two models are used, each formulated from direct numerical simulations, to give the drag, lift and torque correlations for various shaped particles. Previously, within the range of Reynolds number permitted in this study, it was only possible to model the trajectory and full rotational progression of cylindrical particles. The work presented in this paper allows for analysis of a wider range of ice shapes that are commonly seen in icing conditions, capturing the dynamics and behaviours specific to ice crystals. Previous limitations relate to the in ability to account for particle rotation and the dependency of force correlations on the measure of particle sphericity - which are now overcome.
Technical Paper

Motivation, Development and Verification of a Rapid 3D Lagrangian Impingement Code - Trajectory and Catch 3D+ (TAC3D+)

This paper details the motivation, development and validation of a rapid 3D Lagrangian impingement code, Trajectory and Catch 3D+ (TAC3D+). AeroTex’s motivation to develop a 3D Lagrangian method was primarily driven by the inherent mesh dependent dissipation effect found in their 3D Eulerian Water Catch code (EWC) [1]. Studies performed by AeroTex have shown that for geometries where there are aft impingement regions that are partly shadowed by a more forward impingement region, the level of water flux dissipation can be significant, particularly if the mesh is coarse and the impingement region is far aft. Examples of issues where this may be a particular issue would be impingement on a centerline aft mounted engine or the calculation of impingement on the wing root/belly fairing. The code has been developed around a modified version of the OpenFOAM Lagrangian solver.
Technical Paper

Numerical Optimisation of a Helicopter Engine Inlet Electrothermal Ice Protection System

This paper details the process involved in the numerical optimisation of a helicopter engine inlet electrothermal ice protection system. Although the process was developed using a production aircraft, it is demonstrated here using a generic intake and flight conditions, due to confidentiality of the actual design. The process includes adherence to the overall system design objectives (maximum power demand), including tolerances required to account for an industrial system (aircraft voltage variation, manufacturing tolerances). The numerical optimisation was performed using a combination of 2D and 3D methods to define the required heated area, power density, locations and settings for temperature control sensors. The use of 2D design tools allows a rapid iteration process to be performed, leading to the possibility of a higher level of optimisation within the allowable time-frame compared to the use of full 3D methods.