Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Airbus - EMAs for Flight Controls Actuation System - An Important Step Achieved in 2011

2011-10-18
2011-01-2732
A significant step is achieved on the flight control actuation system toward the more electrical aircraft through the Airbus A380, A400M and the A350 development phase ongoing. The A380/A400M/A350 features a mixed flight control actuation power source distribution, associating electrically powered actuators with conventional FlyByWire hydraulic servocontrols. In the scope of the preparation of the future Airbus Aircraft, this paper presents the perspectives of the use of the EMA technologies for the flight control systems in the more electrical aircraft highlighting the main technical challenges need to treat: jamming susceptibility, “on board” maintenance reduction, Operational reliability increase, power electronics and power management optimization, and regarding the environmental constraints, the predicted performances; the benefits associated to the optimized utilization of on-board power sources.
Technical Paper

EMA Aileron COVADIS Development

2011-10-18
2011-01-2729
In the frame of the COVADIS project (flight control with distributed intelligence and systems integration) supported by the DPAC and where Airbus and Sagem are partners, an electromechanical actuator (EMA) developed and produced by Sagem (SAFRAN group) flew for the first time in January 2011 as an aileron primary flight control of the Airbus A320 flight test Aircraft. With this new type of actuator, in the scope of the preparation of the future Airbus Aircraft, the perspectives of using EMA technologies for the flight control systems is an important potential enabler in the more electrical aircraft. The paper deals with the development phase of this actuator from the definition phase up to the flight tests campaign. It is focused on : COVADIS project context (flight control with distributed intelligence and systems integration), The challenges of the definition phase, Test results presentation (ground and flight).
Technical Paper

On-line Estimation of Longitudinal Flight Parameters

2011-10-18
2011-01-2769
The introduction of Fly-By-Wire (FBW) and the increasing level of automation contribute to improve the safety of civil aircraft significantly. These technological steps permit the development of advanced capabilities for detecting, protecting and optimizing A/C guidance and control. Accordingly, this higher complexity requires extending the availability of aircraft states, some flight parameters becoming key parameters to ensure a good behaviour of the flight control systems. Consequently, the monitoring and consolidation of these signals appear as major issues to achieve the expected autonomy. Two different alternatives occur to get this result. The usual solution consists in introducing many functionally redundant elements (sensors) to enlarge the way the key parameters are measured. This solution corresponds to the classical hardware redundancy, but penalizes the overall system performance in terms of weight, power consumption, space requirements, and extra maintenance needs.
Technical Paper

Flight Test Identification Methods for Loads Models and Applications

2011-10-18
2011-01-2763
The Loads discipline contributes to the aircraft structural design by delivering shear, moment and torque (SMT, loads) all across the airframe resulting from application of aircraft airworthiness requirements as laid down in the CS 25/FAR 25 regulations and in some domestic ones. Loads computation considers the maneuver and gust conditions prescribed therein as well as other special design conditions. It is based on very detailed modeling, accounting for aerodynamics in all configurations, mass properties, flexibility of the airframe, flight control laws and retarded laws, hydraulic actuation, and specification of flight control system failure conditions. The resulting shear loads are processed and refined (e.g. nodal loads) and taken into account by the stress department for structural design.
Technical Paper

Eclipse Framework for an Integrated IMA Tool Chain

2011-10-18
2011-01-2635
Development for the Integrated Modular Avionics (IMA) platform is complex owing to the variety of equipment, vendors and non-uniform tools. The development should be simplified by a model-based harmonized tool environment by means of an integrated set of tools of different type, origin and purpose. Eclipse's flexible and modular architecture seems adequate as a framework for such a harmonized IMA development environment. This article evaluates how Eclipse could practically be utilized for this purpose. The IMA process and development requirements like concurrency, different process roles, and multiple tools are mapped to the Eclipse framework. In addition, open-source extensions for model-based engineering and application development are integrated in the tools chain. In order to test the performance, openness and compatibility of Eclipse and the tools from the IMA development process, six current and future tools are integrated into a prototype of a common Eclipse instance.
Technical Paper

Innovation Readiness: Past and Current Drivers in Aeronautical Engineering

2011-10-18
2011-01-2501
This paper proposes a rearview on aeronautical innovation, addresses some 2000-2010 new products, and suggests elements of future vision, serving passengers aspirations. Over 100 years, aeronautics brilliantly domesticated flight: feasibility, safety, efficiency, international travel, traffic volume and noise, allowing airlines to run a business, really connecting real people. Despite some maturations, new developments should extend the notion of passenger service. So far, turbofans became silent and widebodies opened ‘air-bus’ travel for widespread business, tourism or education. Today airports symbolize cities and vitalize regional economies. 2000-2010 saw the full double-decker, the new eco-friendly freighter and electronic ticketing. In technology, new winglets and neo classical engines soon will save short-range blockfuel. In systems and maintenance, integrated modular avionics and onboard data systems give new flexibility, incl by data links to ground.
Technical Paper

Selection of the Most Promising Alternative Fuels for Aircraft Development: ALFA-BIRD Proposal

2011-10-18
2011-01-2791
Air traffic has been steadily increasing for the last years. Moreover, fuel availability at a reasonable cost seems more and more uncertain. Climate change implies that greenhouse gases emissions should be reduced. In this context, the search for new alternative fuels for aircraft seems to be a promising solution. Nevertheless, aeronautic represents a very specific transportation mode, due to its usage (short range, middle range, long range with the same fuel, worldwide distribution of the fuel…) and its compulsory security constraints. In the first part of the European project ALFA-BIRD (Alternative Fuels and Biofuels for Aircraft development - FP7), a selection of the best candidates to become the fuels for the future of aircraft has been done. The selection process was very complex, due to multiple criteria (physical properties, economical issued, environmental issues…).
Technical Paper

Advanced Diagnosis for Sustainable Flight Guidance and Control: The European ADDSAFE Project

2011-10-18
2011-01-2804
The state-of-practice for aircraft manufacturers to diagnose guidance & control faults and obtain full flight envelope protection at all times is to provide high levels of dissimilar hardware redundancy. This ensures sufficient available control action and allows performing coherency tests, cross and consistency checks, voting mechanisms and built-in test techniques of varying sophistication. This hardware-redundancy based fault detection and diagnosis (FDD) approach is nowadays the standard industrial practice and fits also into current aircraft certification processes while ensuring the highest level of safety standards. In the context of future “sustainable” aircraft (More Affordable, Smarter, Cleaner and Quieter), the Electrical Flight Control System (EFCS) design objectives, originating from structural loads design constraints, are becoming more and more stringent.
Technical Paper

Flight Parameter Estimation for Augmented Flight Control System Autonomy

2011-10-18
2011-01-2801
In the framework of the aircraft global optimization, for future and upcoming programs, current research interests include more Electrical Flight Control System (EFCS) autonomy for a more easy-to-handle aircraft. A possible solution is to increase the number of redundant flight parameter sensors but to the detriment of the aircraft weight and so to the cost and performances. This paper proposes an algorithm using PLS (Partial Least Squares) to estimate a flight parameter from independent sensor measurements. The estimates are then used as so-called “software” or “virtual” sensors, allowing aircraft weight saving. This algorithm is based on an iterative processing and thus can be used in real time in the embedded flight control computer. Furthermore, the resulting flight parameter estimates can be used to detect failures. Different detection strategies are proposed and results show that this method can lead to robust detections.
Technical Paper

Characterization of Hypervisors for Security-Enhanced Avionics Applications

2011-10-18
2011-01-2805
Traditionally, software in avionics has been totally separated from open-world software, in order to avoid any interaction that could corrupt critical on-board systems. However, new aircraft generations need more interaction with off-board systems to offer extended services, which makes these information flows potentially dangerous. In a previous work, we have proposed the use of virtualization to ensure dependability of critical applications despite bidirectional communication between critical on-board systems and untrusted off-board systems. We have developed a test bed to assess the performance impact induced by the use of virtualization. In this work, various configurations have been experimented that range from a basic machine without an OS up to the complete architecture featuring a hypervisor and an OS running in a virtual machine. Several tests (computation, memory, network) are carried out, and timing measures are collected on different hypervisors.
X