Refine Your Search

Topic

Author

Search Results

Video

Orbital Drilling Machine for One Way Assembly in Hard Materials

2012-03-23
In Aeronautic industry, when we launch a new industrialization for an aircraft sub assembly we always have the same questions in mind for drilling operations, especially when focusing on lean manufacturing. How can we avoid dismantling and deburring parts after drilling operation? Can a drilling centre perform all the tasks needed to deliver a hole ready to install final fastener? How can we decrease down-time of the drilling centre? Can a drilling centre be integrated in a pulse assembly line? How can we improve environmental efficiency of a drilling centre? It is based on these main drivers that AIRBUS has developed, with SPIE and SOS, a new generation of drilling centre dedicated for hard materials such as titanium, and high thicknesses. The first application was for the assembly of the primary structure of A350 engine pylons. The main solution that was implemented meeting several objectives was the development of orbital drilling technology in hard metal stacks.
Technical Paper

Orbital Drilling

2011-10-18
2011-01-2533
During mechanical assembly, individual parts are joined by different types of fasteners which are commonly to be installed into tightly tolerated holes. Drilling of widely used modern materials like CFRP and titanium leads to challenges in terms of tool and process development. A significant challenge is one step drilling in assemblies made from mixed material stacks. It results in deviating hole diameters making the additional reaming operation essential.”But also drilling of thick single material stacks imposes difficulties in terms of hole tolerance, chip extraction, heat accumulation and lubrication issues, leading to the necessity of drilling in several steps to achieve the required hole quality and integrity. During orbital drilling the drive spindle rotates eccentrically in addition to tool rotation and feed movement, leading to a circular path of the cutting tool. Orbital drilling can offer advantages compared with conventional drilling and reaming.
Technical Paper

Future Concept of Operations: The Airbus ADS-B Perspective

2010-09-30
2010-01-1660
This paper describes the Airbus plans to use ADS-B in the future concept of operations in both the European SESAR and the US NEXTGEN concepts of operations. It details the different steps that are currently considered by Airbus roadmap to deploy ADS-B services and functions. In particular, the following points are described: Use of ADS-B OUT in Non Radar Airspace Use of ADS-B IN and the associated Airbus functions to offer a better Air Traffic Situation Awareness (ATSAW) package: the various applications for airborne, in trail climb/descent procedures or enhanced visual acquisition are particularly detailed. Use of ADS-B for the future Spacing function as currently considered in the initial ASAS implementation for SESAR: the three “Remain Behind”, “Merge at Waypoint then Remain behind” and the “Heading then merge behind” applications are explained.
Technical Paper

Characterization of Hypervisors for Security-Enhanced Avionics Applications

2011-10-18
2011-01-2805
Traditionally, software in avionics has been totally separated from open-world software, in order to avoid any interaction that could corrupt critical on-board systems. However, new aircraft generations need more interaction with off-board systems to offer extended services, which makes these information flows potentially dangerous. In a previous work, we have proposed the use of virtualization to ensure dependability of critical applications despite bidirectional communication between critical on-board systems and untrusted off-board systems. We have developed a test bed to assess the performance impact induced by the use of virtualization. In this work, various configurations have been experimented that range from a basic machine without an OS up to the complete architecture featuring a hypervisor and an OS running in a virtual machine. Several tests (computation, memory, network) are carried out, and timing measures are collected on different hypervisors.
Technical Paper

Advanced Diagnosis for Sustainable Flight Guidance and Control: The European ADDSAFE Project

2011-10-18
2011-01-2804
The state-of-practice for aircraft manufacturers to diagnose guidance & control faults and obtain full flight envelope protection at all times is to provide high levels of dissimilar hardware redundancy. This ensures sufficient available control action and allows performing coherency tests, cross and consistency checks, voting mechanisms and built-in test techniques of varying sophistication. This hardware-redundancy based fault detection and diagnosis (FDD) approach is nowadays the standard industrial practice and fits also into current aircraft certification processes while ensuring the highest level of safety standards. In the context of future “sustainable” aircraft (More Affordable, Smarter, Cleaner and Quieter), the Electrical Flight Control System (EFCS) design objectives, originating from structural loads design constraints, are becoming more and more stringent.
Technical Paper

Flight Parameter Estimation for Augmented Flight Control System Autonomy

2011-10-18
2011-01-2801
In the framework of the aircraft global optimization, for future and upcoming programs, current research interests include more Electrical Flight Control System (EFCS) autonomy for a more easy-to-handle aircraft. A possible solution is to increase the number of redundant flight parameter sensors but to the detriment of the aircraft weight and so to the cost and performances. This paper proposes an algorithm using PLS (Partial Least Squares) to estimate a flight parameter from independent sensor measurements. The estimates are then used as so-called “software” or “virtual” sensors, allowing aircraft weight saving. This algorithm is based on an iterative processing and thus can be used in real time in the embedded flight control computer. Furthermore, the resulting flight parameter estimates can be used to detect failures. Different detection strategies are proposed and results show that this method can lead to robust detections.
Technical Paper

Versatile NC Part Programs for Automated Fastening Systems in Pulsed Assembly Lines

2011-10-18
2011-01-2771
Pulsed assembly lines are providing an enormous potential to the aviation industry, especially in terms of reduced lead times, optimized asset utilization and an increased ratio of value adding processes. As it comes near to flow manufacturing the realization of a pulsed assembly line leads to special requirements to the use of NC programs for automated drilling and fastening processes, especially as a result of the unique part positions upon each pulse and concerning the balancing of the work onto several serialized fastening machines. The key to those challenges are versatile NC part programs that eliminate the need for any additionally written NC programs by self-adapting onto the concrete situation within the working areas of the production line.
Technical Paper

Software Complex for Riveting Process Simulation

2011-10-18
2011-01-2772
The presented paper describes the software complex developed in St. Petersburg Polytechnical University for AIRBUS aimed at simulation of aircraft assembly process. Previous version of this complex was described in [1].
Technical Paper

Flight Test Identification Methods for Loads Models and Applications

2011-10-18
2011-01-2763
The Loads discipline contributes to the aircraft structural design by delivering shear, moment and torque (SMT, loads) all across the airframe resulting from application of aircraft airworthiness requirements as laid down in the CS 25/FAR 25 regulations and in some domestic ones. Loads computation considers the maneuver and gust conditions prescribed therein as well as other special design conditions. It is based on very detailed modeling, accounting for aerodynamics in all configurations, mass properties, flexibility of the airframe, flight control laws and retarded laws, hydraulic actuation, and specification of flight control system failure conditions. The resulting shear loads are processed and refined (e.g. nodal loads) and taken into account by the stress department for structural design.
Technical Paper

On-line Estimation of Longitudinal Flight Parameters

2011-10-18
2011-01-2769
The introduction of Fly-By-Wire (FBW) and the increasing level of automation contribute to improve the safety of civil aircraft significantly. These technological steps permit the development of advanced capabilities for detecting, protecting and optimizing A/C guidance and control. Accordingly, this higher complexity requires extending the availability of aircraft states, some flight parameters becoming key parameters to ensure a good behaviour of the flight control systems. Consequently, the monitoring and consolidation of these signals appear as major issues to achieve the expected autonomy. Two different alternatives occur to get this result. The usual solution consists in introducing many functionally redundant elements (sensors) to enlarge the way the key parameters are measured. This solution corresponds to the classical hardware redundancy, but penalizes the overall system performance in terms of weight, power consumption, space requirements, and extra maintenance needs.
Technical Paper

Virtual Testing for High Lift Systems

2011-10-18
2011-01-2754
Improving the verification and certification process of the high lift system by introduction of virtual testing is one of the approaches to counter the challenges related to testing of future aircraft, in terms of performing more tests of more complex systems in less time. The quality of the applied modelling methods itself and the guarantee of a completely traceable simulation lifecycle management along the aircraft development are essential. The presentation shows how existing processes for the management of all test related data have to be extended to cover the specifics of using multi body simulation models for virtual tests related to high lift failure cases. Based on a demonstrator, MSC Software GmbH and Airbus developed and are still refining the SimManager based “High Lift System Virtual Test Portal”. This portal has to fulfil on the one side global requirements like data management, data traceability and workflow management.
Technical Paper

Innovation Readiness: Past and Current Drivers in Aeronautical Engineering

2011-10-18
2011-01-2501
This paper proposes a rearview on aeronautical innovation, addresses some 2000-2010 new products, and suggests elements of future vision, serving passengers aspirations. Over 100 years, aeronautics brilliantly domesticated flight: feasibility, safety, efficiency, international travel, traffic volume and noise, allowing airlines to run a business, really connecting real people. Despite some maturations, new developments should extend the notion of passenger service. So far, turbofans became silent and widebodies opened ‘air-bus’ travel for widespread business, tourism or education. Today airports symbolize cities and vitalize regional economies. 2000-2010 saw the full double-decker, the new eco-friendly freighter and electronic ticketing. In technology, new winglets and neo classical engines soon will save short-range blockfuel. In systems and maintenance, integrated modular avionics and onboard data systems give new flexibility, incl by data links to ground.
Technical Paper

Reducing Energy Use in Aircraft Component Manufacture - Applying Best Practice in Sustainable Manufacturing

2011-10-18
2011-01-2739
Rising energy costs and increased regulation in recent years have caused industrialists to investigate how to apply ‘energy efficiency’ to their manufacturing operations. As well as reducing operating costs, the benefits of a ‘green’ image as a market differentiator are beginning to be realised. The literature describes the successful implementation of a variety of approaches to energy reduction, with particular focus on energy intensive industries (such as foundries) and on improvements to building services (such as lighting). However, a systematic approach to applying sustainable practices to the manufacturing processes involved in the production of high value products, such as aircraft, is noticeably absent. This paper describes how a number of sustainable manufacturing approaches have been combined, enhanced and applied to the shop floor of a manufacturing facility in the UK responsible for the production of large component assemblies for the aerospace industry.
Technical Paper

Orbital Drilling Machine for One Way Assembly in Hard Materials

2011-10-18
2011-01-2745
In Aeronautic industry, when we launch a new industrialization for an aircraft sub assembly we always have the same questions in mind for drilling operations, especially when focusing on lean manufacturing. How can we avoid dismantling and deburring parts after drilling operation? Can a drilling centre perform all the tasks needed to deliver a hole ready to install final fastener? How can we simplify specific jigs used to maintain parts during drilling operations? How can we decrease down-time of the drilling centre? Can a drilling centre be integrated in a pulse assembly line? How can we improve environmental efficiency of a drilling centre? It is based on these main drivers that AIRBUS has developed, with SPIE and SOS, a new generation of drilling centre dedicated for hard materials such as titanium, and high thicknesses. The first application was for the assembly of the primary structure of A350 engine pylons.
Technical Paper

EMA Aileron COVADIS Development

2011-10-18
2011-01-2729
In the frame of the COVADIS project (flight control with distributed intelligence and systems integration) supported by the DPAC and where Airbus and Sagem are partners, an electromechanical actuator (EMA) developed and produced by Sagem (SAFRAN group) flew for the first time in January 2011 as an aileron primary flight control of the Airbus A320 flight test Aircraft. With this new type of actuator, in the scope of the preparation of the future Airbus Aircraft, the perspectives of using EMA technologies for the flight control systems is an important potential enabler in the more electrical aircraft. The paper deals with the development phase of this actuator from the definition phase up to the flight tests campaign. It is focused on : COVADIS project context (flight control with distributed intelligence and systems integration), The challenges of the definition phase, Test results presentation (ground and flight).
Technical Paper

Airbus - EMAs for Flight Controls Actuation System - An Important Step Achieved in 2011

2011-10-18
2011-01-2732
A significant step is achieved on the flight control actuation system toward the more electrical aircraft through the Airbus A380, A400M and the A350 development phase ongoing. The A380/A400M/A350 features a mixed flight control actuation power source distribution, associating electrically powered actuators with conventional FlyByWire hydraulic servocontrols. In the scope of the preparation of the future Airbus Aircraft, this paper presents the perspectives of the use of the EMA technologies for the flight control systems in the more electrical aircraft highlighting the main technical challenges need to treat: jamming susceptibility, “on board” maintenance reduction, Operational reliability increase, power electronics and power management optimization, and regarding the environmental constraints, the predicted performances; the benefits associated to the optimized utilization of on-board power sources.
Technical Paper

Force Controlled Assembly of a Compliant Rib

2011-10-18
2011-01-2734
Automation in aerospace industry is often in the form of dedicated solutions and focused on processes like drilling, riveting etc. The common industrial robot has due to limitations in positional accuracy and stiffness often been unsuitable for aerospace manufacturing. One major cost driver in aircraft manufacturing is manual assembly and the bespoke tooling needed. Assembly tasks frequently involve setting relations between parts rather than a global need for accuracy. This makes assembly a suitable process for the use of force control. With force control a robot equipped with needed software and hardware, searches for desired force rather than for a position. To test the usefulness of force control for aircraft assembly an experimental case aligning a compliant rib to multiple surfaces was designed and executed. The system used consisted of a standard ABB robot and an open controller and the assembly sequence was made up of several steps in order to achieve final position.
Technical Paper

Development of a High Temperature Power Module Technology with SiC Devices for High Density Power Electronics

2011-10-18
2011-01-2620
This paper presents the development of a high density packaging technology for wide band gap power devices, such as silicon carbide (SiC). These devices are interesting candidates for the next aircraft power electronic converters. Effectively they achieve high switching frequencies thanks to the low losses level. High switching frequencies lead to reduce the passive components size and to an overall weight reduction of power converters. Moreover, SiC devices may enable operation at junction temperatures around 250°C. The cooling requirement is much less stringent than for usual Si devices. This might considerably simplify the cooling system, and reduce the overall weight. To achieve the integration requirements for SiC devices, classical wire bonding interconnection is replaced by a stacked packaging using bump interconnection technologies, called sandwich. These technologies offer two thermal paths to drain heat out and present more power integration possibilities.
Technical Paper

Applying a Concept for Robot-Human Cooperation to Aerospace Equipping Processes

2011-10-18
2011-01-2655
Significant effort has been applied to the introduction of automation for the structural assembly of aircraft. However, the equipping of the aircraft with internal services such as hydraulics, fuel, bleed-air and electrics and the attachment of movables such as ailerons and flaps remains almost exclusively manual and little research has been directed towards it. The problem is that the process requires lengthy assembly methods and there are many complex tasks which require high levels of dexterity and judgement from human operators. The parts used are prone to tolerance stack-ups, the tolerance for mating parts is extremely tight (sub-millimetre) and access is very poor. All of these make the application of conventional automation almost impossible. A possible solution is flexible metrology assisted collaborative assembly. This aims to optimise the assembly processes by using a robot to position the parts whilst an operator performs the fixing process.
Technical Paper

Eclipse Framework for an Integrated IMA Tool Chain

2011-10-18
2011-01-2635
Development for the Integrated Modular Avionics (IMA) platform is complex owing to the variety of equipment, vendors and non-uniform tools. The development should be simplified by a model-based harmonized tool environment by means of an integrated set of tools of different type, origin and purpose. Eclipse's flexible and modular architecture seems adequate as a framework for such a harmonized IMA development environment. This article evaluates how Eclipse could practically be utilized for this purpose. The IMA process and development requirements like concurrency, different process roles, and multiple tools are mapped to the Eclipse framework. In addition, open-source extensions for model-based engineering and application development are integrated in the tools chain. In order to test the performance, openness and compatibility of Eclipse and the tools from the IMA development process, six current and future tools are integrated into a prototype of a common Eclipse instance.
X