Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Development of 4WS Control Algorithm for a SUV

2002-03-04
2002-01-1216
Sport Utility Vehicles (SUV) and light duty trucks have gained in popularity for the last several years and the demand for more car-like behavior has increased, accordingly. Two areas for potential improvement are vehicle stability and maneuverability while parking. 4WS (4 wheel steering system) is known as an effective solution to stability and low speed maneuverability. In this paper, we identify a new systematic design method of two degree of freedom vehicle state feedback control algorithm that can improve vehicle stability, and show its control effects for a SUV with trailer towing. Low speed maneuvering is improved when the rear tires are steered in negative phase relative to the front tires. However with a large rear steer angle at low speed, the vehicle's rear overhang tracks a wider swing-out path than a 2WS vehicle. For this concern, we propose a new swing-out reduction control algorithm.
Technical Paper

Vibration Analysis of Control Valve for Active Suspension

1992-02-01
920272
An active suspension system controls a spring constant and an attenuater in real time using a power supply. Generally, the hydraulic pressures are used for transmitting the power. Therefore, a highly reliable and inexpensive control system has been required for a commercial use. This has been achieved by developing a mechanical fluid servo valve which comprises a simple combination of a solenoid valve and a spool valve. The technical problem of the valve vibrations has been solved through the numerical analyses, the fluid flow visualization tests and the vehicle tests.
Technical Paper

Sensor-Less Position Control System for Memory Seat

2003-03-03
2003-01-0095
We have developed Sensor-less Memory Seat system that requires no position sensors such as Hall ICs etc.. It detects the rotation of DC motor by current ripple signals in motor operating current. The developed Sensor-less position control system can attenuate a wide frequency variation of Motor current noise which varies depending on motor condition and convert small current ripples to Pulse signals in proportion to the rotation of DC motor. We realized low cost position control method for use in Memory Seat system.
Technical Paper

Development of New Aisin Transmission for Medium Duty Truck and Bus

1994-11-01
942283
AISIN SEIKI CO., Ltd. Started the production of electronically controlled hydraulic automatic transmissions for medium-duty trucks and buses in 1989. The number of vehicles on the Japanese market in which this system is adopted is increasing steadily. After re-examining market needs, AISIN SEIKI CO., Ltd. has newly developed an electronically controlled hydraulic automatic transmission A580 which focuses on improved input capacity, driving performance and fuel economy for medium-duty trucks and buses and lessens learnt from experience.
Technical Paper

Autonomous Vehicle Control System Using an Image Processing Sensor

1995-02-01
950470
Development of a system which utilizes technology for the recognition of a vehicle's surroundings. Research is currently taking place in many countries, the goals of which are to improve a vehicle's safety and convenience by reducing driver strain through the automation of the recognition, judgment, and operation capabilities that are needed when driving an automobile. To recognize the vehicle's surroundings, we have adopted an image sensor system which offers superior three-dimensional recognition capabilities. In this paper, we will introduce a inter vehicle distance control system which controls the vehicle's throttle and braking functions by detecting the position of the driving lane and the distance to the vehicle in front based on the images obtained by a CCD camera.
Technical Paper

Development of Robust Motor Servo Control for Rear Steering Actuator Based on Two-Degree-of-Freedom Control System

1999-03-01
1999-01-0402
Rear steering system can improve vehicle stability using active control of the rear wheel angles. For designing the rear steering system, environmental conditions, performance deterioration due to aging and component variation as a result of manufacturing tolerance under mass production must be taken into consideration. We have applied two-degree-of-freedom (2DOF) feedback control with feedforward control for the motor servo control so that the rear steering actuator can track the target rear steering angle accurately and stably. The control system is designed based upon a nominal mathematical model and its variation range. As a result, the rear steering actuator can be controlled with excellent performance and high reliability. This paper describes the mathematical model construction in the frequency domain and a robust motor servo controller design based on 2DOF feedback control with feedforward control.
X