Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Optimization Process for Off-road Vehicle Shock Absorbers

2008-04-14
2008-01-1150
The purpose of this paper is to demonstrate a process to automatically modify and optimize a damping curve for a specific road input. Off road race vehicles are required to maintain high speeds over difficult terrain. This requires large wheel displacements, and shocks tuned to properly damp wheels motions using available wheel travel. Selection of proper damping values allows full use of available suspension travel while minimizing loads and accelerations experienced by the vehicle and driver. Using Altair's MotionView and HyperStudy, a process is demonstrated where a damping curve can be modified based on specific constraints and performance criteria. A full vehicle MotionView model of a generic off-road race car will be simulated driving over a large obstacle. Using optimization techniques within HyperStudy, the characteristics of the damping curve will be modified so that pitch displacement and vertical accelerations on the vehicle and driver are minimized.
Technical Paper

Vehicle Pulse Shape Optimization to Improve Occupant Response in Front Impact

2004-03-08
2004-01-1625
This paper presents a new approach to improve occupant response in a front impact event. Instead of designing a vehicle structure for maximum structural efficiency and safety and then engineer a restraint system for the vehicle, this paper proposes to use a systems approach. In this approach, the vehicle structural response during impact (i.e., pulse) and the restraint system are considered together in the optimization process. In this paper, the 35 mph front impact into a rigid barrier with belted occupants, which is the NHTSA NCAP test, will be used to demonstrate the proposed new approach.
Technical Paper

Light Truck Frame Joint Stiffness Study

2003-03-03
2003-01-0241
Truck frame structural performance of body on frame vehicles is greatly affected by crossmember and joint design. While the structural characteristics of these joints vary widely, there is no known tool currently in use that quickly predicts joint stiffness early in the design cycle. This paper will describe a process used to evaluate the structural stiffness of frame joints based on research of existing procedures and implementation of newly developed methods. Results of five different joint tests selected from current production body-on-frame vehicles will be reported. Correlation between finite element analysis and test results will be shown. Three samples of each joint were tested and the sample variation will be shown. After physical and analytical testing was completed, a Design of Experiments approach was implemented to evaluate the sensitivity of joints with respect to gauge and shape modification.
X