Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Simulation Diagnostics Approach for Identification, Ranking and Optimization of Electric Motor Design Parameters for Optimal NVH Performance

2021-08-31
2021-01-1079
With increasing efforts towards rapid electrification of powertrains, NVH engineers face new set of challenges. Elimination of the IC engines drastically reduces powertrain borne noise levels but unmasks other existing noises like wind, road, ancillary devices, and squeak & rattle. In addition, the new tonal sounds from electro-mechanical drive systems makes the noise more annoying even though it is lesser quantitatively. In summary, the electrification of powertrains has shifted powertrain NVH development from overall level to sound quality with different targets requiring several electro-mechanical solutions with innovative simulation, testing, and optimization approaches. The purpose of the paper is to present an approach to detect, quantify, and optimize the structure-borne radiated noise of an electric motor due to electromagnetic forces or maxwell pressure exerted by magnetic effects in electric motor.
Journal Article

Design of a 5.9 GHz High Directivity Planar Antenna Using Topology Optimization for V2V Applications

2017-03-28
2017-01-1691
A low profile high directivity antenna is designed to operate at 5.9 GHz for Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communications to ensure connectivity in different propagation channels. Patch antennas are still an ongoing topic of interest due to their advantages: low profile, low cost, and ease of fabrication. One disadvantage of the patch antenna is low directivity which results in low range performance. In this paper, we introduce an efficient and novel way to improve the directivity of patch antenna using topology optimization and design of experiments (DoE). Numerical simulations are done using Method of Moments (MoM) technique in the commercially available tool, FEKO. We use global response surface method (GRSM) for double objectives topology optimization. Numerical results show a promising use of topology optimization and DoE techniques for the systematic design of high directivity of low profile single element patch antennas.
Technical Paper

Improving Low Frequency Torsional Vibrations NVH Performance through Analysis and Test

2007-05-15
2007-01-2242
Low frequency torsional vibrations can be a significant source of objectionable vehicle vibrations and in-vehicle boom, especially with changes in engine operation required for improved fuel economy. These changes include lower torque converter lock-up speeds and cylinder deactivation. This paper has two objectives: 1) Examine the effect of increased torsional vibrations on vehicle NVH performance and ways to improve this performance early in the program using test and simulation techniques. The important design parameters affecting vehicle NVH performance will be identified, and the trade-offs required to produce an optimized design will be examined. Also, the relationship between torsional vibrations and mount excursions, will be examined. 2) Investigate the ability of simulation techniques to predict and improve torsional vibration NVH performance. Evaluate the accuracy of the analytical models by comparison to test results.
Technical Paper

Performance Evaluation of Door & Seat Side-Impact Airbags for Passenger Van and Sport-Utility Vehicles

1998-02-23
980912
Side impact accounts for a significant source of societal harm, injury and death. To address this issue, Europe and US have introduced legislation to be met for the new vehicle certification. In an effort to meet these regulations and the market demand for safety, Automotive manufacturers have significantly improved vehicle side structure integrity and introduced side impact airbags are for added protection. Today, passenger vans, light truck and sport-utility type vehicles are all popular consumer choices in the US. These vehicles differ significantly from passenger cars in many respects and as such need special design considerations for side airbags. Here, MADYMO-3D model of a generic passenger van / Sport-Utility type vehicle is created and correlated to FMVSS-214 side impact crash test. This model is used to evaluate both door and seat mounted side airbag designs in different orientations at standard test impact condition and at a higher speed.
Technical Paper

Multi-Disciplinary Aerodynamics Analysis for Vehicles: Application of External Flow Simulations to Aerodynamics, Aeroacoustics and Thermal Management of a Pickup Truck

2007-04-16
2007-01-0100
During the design process for a vehicle, the CAD surface geometry becomes available at an early stage so that numerical assessment of aerodynamic performance may accompany the design of the vehicle's shape. Accurate prediction requires open grille models with detailed underhood and underbody geometry with a high level of detail on the upper body surface, such as moldings, trim and parting lines. These details are also needed for aeroacoustics simulations to compute wall-pressure fluctuations, and for thermal management simulations to compute underhood cooling, surface temperatures and heat exchanger effectiveness. This paper presents the results of a significant effort to capitalize on the investment required to build a detailed virtual model of a pickup truck in order to simultaneously assess performance factors for aerodynamics, aeroacoustics and thermal management.
Technical Paper

248mm Elliptical Torque Converter from DaimlerChrysler Corporation

2007-04-16
2007-01-0241
The need for efficient space utilization has provided a framework for the design of a 248mm family of torque converters that supports a wide choice of engine and transmission combinations. The axial length of the part and its weight have been substantially reduced while the performance range has been broadened without degradation of efficiency. The new converter operates in an expanded slipping clutch mode. It significantly contributes to the performance and fuel economy improvements of related vehicles. To meet the cost target, the comprehensive lineup and the resulting complexity have required a high level of component interchangeability. During the design phase, the manufacturing core competencies were scrutinized and process redundancies eliminated, both resulting in optimization of material selection and applicable technology.
Technical Paper

Sensitivity Analysis of Powertrain Cooling System Performance

2007-04-16
2007-01-0598
This paper identifies the difference in powertrain cooling system content levels using a nominal and a +3 Standard deviation maximum temperature design approach. Variation simulation analysis tools are used along with a 1-D cooling system performance model to predict resulting temperature distribution for different combinations of input variable populations. The analysis will show differential in powertrain cooling system content, mass, and impact to fuel economy for a nominal vs. +3 sigma design approach.
Technical Paper

Simulation Process to Investigate Suspension Sensitivity to Brake Judder

2007-04-16
2007-01-0590
Brake judder, which is a low frequency excitation of the suspension and thus, the body structure during low-G braking, is mainly felt at the steering wheel and throughout the vehicle structure. Brake judder is a problem that costs manufacturers millions of dollars in warranty cost and undesirable trade offs. The magnitude of judder response depends not only on the brake torque variation, but also on the suspension design character-istics. This paper discusses the judder simulation process using ADAMS software to investigate the suspension design sensitivity to the first order brake judder performance. The paper recommends “tuning knobs” to suspension designers and vehicle development engineers to resolve issues in the design and development stages. Various suspension design varia-bles including geometry and compliances as well as brake related characteristics were investigated.
Technical Paper

Effect of Cross Flow on Performance of a PEM Fuel Cell

2007-04-16
2007-01-0697
A serpentine flow channel is one of the most common and practical channel layouts for a PEM fuel cell since it ensures the removal of water produced in a cell. While the reactant flows along the flow channel, it can also leak or cross to neighboring channels via the porous gas diffusion layer due to a high pressure gradient. Such a cross flow leads to effective water removal in a gas diffusion layer thus enlarging the active area for reaction although this cross flow has largely been ignored in previous studies. In this study, neutron radiography is applied to investigate the liquid water accumulation and its effect on the performance of a PEM fuel cell. Liquid water tends to accumulate in the gas diffusion layer adjacent to the flow channel area while the liquid water formed in the gas diffusion layer next to the channel land area seems to be effectively removed by the cross leakage flow between the adjacent flow channels.
Technical Paper

Implicit and Explicit Finite Element Methods for Crash Safety Analysis

2007-04-16
2007-01-0982
Explicit method is commonly used in crashworthiness analysis due to its capability to solve highly non-linear problems without numerous iterations and convergence problems. However, the time step for explicit methods is limited by the time that the physical wave crosses the element. Therefore, to avoid large amount of CPU time, the explicit method is usually used for non-linear dynamic problems with a short period of simulation duration. For problems under quasi-static loading conditions at pre-crash and post-crash, implicit method could be more efficient than explicit methods because the required computation time is much shorter. Due to the recent advance of crash codes, which allows both implicit and explicit computations to be performed in the same code, crash engineers are able to use explicit computation for crash simulation as well as implicit computation for some of the pre-crash quasi-static loading or post-crash spring back simulations.
Technical Paper

Development of Active Suspension Control for Combined Handling and Rollover Propensity Enhancement

2007-04-16
2007-01-0826
A conceptual study of a control strategy that improves vehicle handling during cornering maneuvers while improving vehicle roll stability is presented. From the vehicle rollover propensity estimated by vehicle states, the proposed control strategy generates different actuation forces between the front and the rear suspensions to meet its handling and roll stability objectives. Simulation results for different vehicle maneuvers show that the proposed algorithm can effectively balance between enhanced handling and rollover stability.
Technical Paper

Strength Prediction and Correlation of Tow Hook Systems using Finite Element Analyses

2007-04-16
2007-01-1206
In this paper, tow hook systems and their functional objectives are briefly introduced. General analysis considerations in strength prediction of a tow hook system are described. These considerations contain nonlinear, clamping and material property simulations. Connections and loading simulation of a tow hook system model are discussed in details. A correlation example of a tow hook system is illustrated. This study shows that detailed modeling of a tow hook system is a fundamental requirement for accurate strength prediction and good correlation between finite element analysis and testing.
Technical Paper

Finite Element Analyses of Fastened Joints in Automotive Engineering

2007-04-16
2007-01-1204
In this paper, the methodology of finite element analyses of fastened joints in automotive engineering applications is described in detail. The analyses cover a) the possibility of slippage of the spacer with the design/actual clamp load, and under critical operating loads; b) the strength of the fastener and other structural components comprising the joint under the maximum clamp load. The types of fastened joints, the mechanical characteristics of the joints, the relationship of clamp load to torque, the design and maximum clamp loads, the finite element model meshing and assembly, the non-linearity due to contact, the determination of gaps and stack-up, and the nonlinear material simulation and loading procedures are described. An analysis example of a fastened joint on chassis is also illustrated.
Technical Paper

Transmission Mount Assembly Modelling for Load Simulation and Analysis

2007-04-16
2007-01-1348
Transmission mounts are usually tested as an assembly and typically only translational stiffnesses are provided. The torsional stiffness of the assembly is traditionally estimated based on experience in load simulation and analysis. This paper presents a procedure to estimate the torsional stiffness of the transmission mount assembly by using the test data. The effects of the torsional stiffness on the simulation results are also discussed.
Technical Paper

Robust Optimization of Engine Lubrication System

2007-04-16
2007-01-1568
The quality of engine lubrication depends upon how much oil is supplied and how the lubricant is pressurized to the lubricated components. These variables strongly affect the safe operation and lifespan of an engine. During the conceptual design stage of an engine, its lubrication system cannot be verified experimentally. It is highly desirable for design engineers to utilize computer simulations and robust design methodology in order to achieve their goal of optimizing the engine lubrication system. The heuristic design principle is a relatively routine resource for design engineers to pursue although it is time consuming and sacrifices valuable developing time. This paper introduces an unusual design methodology in which design engineers were involved in analyzing their own designs along with lubrication system analyst to establish a link between two sophisticated software packages.
Technical Paper

Stamping Effect on Oil Canning and Dent Resistance Performances of an Automotive Roof Panel

2007-04-16
2007-01-1696
The objective of this paper is to investigate the effect of stamping process on oil canning and dent resistance performances of an automotive roof panel. Finite element analysis of stamping processes was carried out using LS-Dyna to obtain thickness and plastic strain distributions under various forming conditions. The forming results were mapped onto the roof model by an in-house developed mapping code. A displacement control approach using an implicit FEM code ABAQUS/Standard was employed for oil canning and denting analysis. An Auto/Steel Partnership Standardized Test Procedure for Dent Resistance was employed to establish the analysis model and to determine the dent and oil canning loads. The results indicate that stamping has a positive effect on dent resistance and a negative effect on oil canning performance. As forming strains increase, dent resistance increases while the oil canning load decreases.
Technical Paper

Model Based Reusable and Reliable Software Validation for Functional Coverage using Virtual ECUs

2007-04-16
2007-01-1742
In embedded software world, development and testing are becoming far more complex with growing functionality and fail safe strategies. As a result of that, model-based software development is getting increasingly popular in capturing the functional requirements and auto generating the code from these validated models to avoid any functional deficiency. However, the complexity in the model may not be correctly interpreted by the code generation tool and may result to an incorrect code behavior. In this paper, a methodology has been proposed and implemented to validate the generated code against the models. Simulation test scripts are recorded in the modeling environment to generate the desired set of test inputs. These input scripts are designed to get complete transition and state exposure to maximize the functional coverage. With these test scripts, expected outputs are recorded for downstream validation in the simulation environment with mature models.
Technical Paper

Optimization Process for Off-road Vehicle Shock Absorbers

2008-04-14
2008-01-1150
The purpose of this paper is to demonstrate a process to automatically modify and optimize a damping curve for a specific road input. Off road race vehicles are required to maintain high speeds over difficult terrain. This requires large wheel displacements, and shocks tuned to properly damp wheels motions using available wheel travel. Selection of proper damping values allows full use of available suspension travel while minimizing loads and accelerations experienced by the vehicle and driver. Using Altair's MotionView and HyperStudy, a process is demonstrated where a damping curve can be modified based on specific constraints and performance criteria. A full vehicle MotionView model of a generic off-road race car will be simulated driving over a large obstacle. Using optimization techniques within HyperStudy, the characteristics of the damping curve will be modified so that pitch displacement and vertical accelerations on the vehicle and driver are minimized.
Technical Paper

Grammatical Evolution Based Tool for Predicting Multivariable Response Surface for Laser Lap Welding

2008-04-14
2008-01-1372
The problem of predicting the quality of weld is critical to manufacturing. A great deal of data is collected under multiple conditions to predict the quality. The data generated at Daimler Chrysler has been used to develop a model based on grammatical evolution. Grammatical Evolution Technique is based on Genetic Algorithms and generates rules from the data which fit the data. This paper describes the development of a software tool that enables the user to choose input variables such as the metal types of top and bottom layers and their thickness, intensity and speed of laser beam, to generate a three dimensional map showing weld quality. A 3D weld quality surface can be generated in response to any of the two input variables picked from the set of defining input parameters. This tool will enable the user to pick the right set of input conditions to get an optimal weld quality. The tool is developed in Matlab with Graphical User Interface for the ease of operation.
Technical Paper

Extruded Aluminum Crash Can Topology for Maximizing Specific Energy Absorption

2008-04-14
2008-01-1500
Specific energy absorption (SEA) is a quantitative measure of the efficiency of a structural member in absorbing impact energy. For an extruded aluminum crash can, SEA generally depends upon the topology of its cross-section. An investigation is carried out to determine the optimal cross-sectional topologies for maximizing SEA while considering manufacturing constrains such as, permissible die radii, gauges, etc. A comprehensive DOE type matrix of cross-sectional topologies has been developed by considering a wide variety of practical shapes and configurations. Since it is critical to include all feasible topologies, much thought and care has been given in developing this matrix. Detailed finite element crash analyses are carried out to simulate axial crushing of the selected crash cans topologies and the resulting specific energy absorption (SEA) is estimated for each case.
X