Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Numerical Investigation to Fuel Injection Strategy and Thermal Condition Impacts on GCI Combustion at Low and Medium Loads Using CFD

2021-09-21
2021-01-1155
This research numerically investigated the combustion process and exhaust emissions from a light-duty Gasoline Compression Ignition (GCI) engine operating at low load as well as medium load conditions using a commercial computational fluid dynamic (CFD) software Converge. The fuel injection strategies and thermal boundary conditions effects were examined to produce locally stratified and globally lean partially premixed compression ignition (PPCI) combustion. The effects of fuel injection pressure, number of injections, and the quantity of fuel injected in each pulse were examined and optimized for emissions and fuel consumption (FC) under the design constraints of 180 bar peak cylinder pressure (PCP) and 10 bar/° CA maximum pressure rise rate (MPRR).
Technical Paper

Characterization of Particulate Matter Emissions from Heavy-Duty Partially Premixed Compression Ignition with Gasoline-Range Fuels

2019-04-02
2019-01-1185
In this study, the compression ratio of a commercial 15L heavy-duty diesel engine was lowered and a split injection strategy was developed to promote partially premixed compression ignition (PPCI) combustion. Various low reactivity gasoline-range fuels were compared with ultra-low-sulfur diesel fuel (ULSD) for steady-state engine performance and emissions. Specially, particulate matter (PM) emissions were examined for their mass, size and number concentrations, and further characterized by organic/elemental carbon analysis, chemical speciation and thermogravimetric analysis. As more fuel-efficient PPCI combustion was promoted, a slight reduction in fuel consumption was observed for all gasoline-range fuels, which also had higher heating values than ULSD. Since mixing-controlled combustion dominated the latter part of the combustion process, hydrocarbon (HC) and carbon monoxide (CO) emissions were only slightly increased with the gasoline-range fuels.
X