Refine Your Search


Search Results

Technical Paper

Emissions Results for Dedicated Propane Chrysler Minivans: The 1996 Propane Vehicle Challenge

The U.S. Department of Energy, through Argonne National Laboratory, and in cooperation with Natural Resources-Canada and Chrysler Canada, sponsored and organized the 1996 Propane Vehicle Challenge (PVC). For this competition, 13 university teams from North America each received a stock Chrysler minivan to be converted to dedicated propane operation while maintaining maximum production feasibility. The converted vehicles were tested for performance (driveability, cold- and hot-start, acceleration, range, and fuel economy) and exhaust emissions. Of the 13 entries for the 1996 PVC, 10 completed all of the events scheduled, including the emissions test. The schools used a variety of fuel-management, fuel-phase and engine-control strategies, but their strategies can be summarized as three main types: liquid fuel-injection, gaseous fuel-injection, and gaseous carburetor. The converted vehicles performed similarly to the gasoline minivan.
Technical Paper

MARVEL: A PC-Based Interactive Software Package for Life-Cycle Evaluations of Hybrid/Electric Vehicles

As a life-cycle analysis tool, MARVEL has been developed for the evaluation of hybrid/electric vehicle systems. It can identify the optimal combination of battery and heat engine characteristics for different vehicle types and performance requirements, on the basis of either life-cycle cost or fuel efficiency. Battery models that allow trade-offs between specific power and specific energy, between cycle life and depth of discharge, between peak power and depth of discharge, and between other parameters, are included in the software. A parallel hybrid configuration, using an internal combustion engine and a battery as the power sources, can be simulated with a user-specified energy management strategy. The PC-based software package can also be used for cost or fuel efficiency comparisons among conventional, electric, and hybrid vehicles.
Technical Paper

Life-Cycle Energy Savings Potential from Aluminum-Intensive Vehicles

The life-cycle energy and fuel-use impacts of U.S.-produced aluminum-intensive passenger cars and passenger trucks are assessed. The energy analysis includes vehicle fuel consumption, material production energy, and recycling energy. A model that simulates market dynamics was used to project aluminum-intensive vehicle market shares and national energy savings potential for the period between 2005 and 2030. We conclude that there is a net energy savings with the use of aluminum-intensive vehicles. Manufacturing costs must be reduced to achieve significant market penetration of aluminum-intensive vehicles. The petroleum energy saved from improved fuel efficiency offsets the additional energy needed to manufacture aluminum compared to steel. The energy needed to make aluminum can be reduced further if wrought aluminum is recycled back to wrought aluminum. We find that oil use is displaced by additional use of natural gas and nonfossil energy, but use of coal is lower.
Technical Paper

HEV Dynamometer Testing with State-of-Charge Corrections in the 1995 HEV Challenge

In the 1995 HEV Challenge competition, 17 prototype Hybrid Electric Vehicles (HEVs) were tested by using special HEV test procedures. The contribution of the batteries during the test, as measured by changes in battery state-of-charge (SOC), were accounted for by applying SOC corrections to the test data acquired from the results of the HEV test. The details of SOC corrections are described and two different HEV test methods are explained. The results of the HEV test methods are explained. The results of the HEV tests and the effects on the test outcome of varying HEV designs and control strategies are examined. Although many teams had technical problems with their vehicles, a few vehicles demonstrated high fuel economy and low emissions. One vehicle had emissions lower than California's ultra-low emission vehicle (ULEV) emissions rates, and two vehicles demonstrated higher fuel economy and better acceleration than their stock counterparts.
Technical Paper

The 1995 HEV Challenge: Results and Technology Summary

The objective of this paper is to analyze and summarize the performance results and the technology used in the 1995 Hybrid Electric Vehicle (HEV) Challenge. Government and industry are exploring hybrid electric vehicle technology to significantly improve fuel economy and reduce emissions of the vehicles without sacrificing performance. This last in a three-year series of HEV competitions provided the testing grounds to evaluate the different approaches of 29 universities and colleges constructing HEVs. These HEVs competed in an array of events, including: acceleration, emissions testing, consumer acceptance, range, vehicle handling, HVAC testing, fuel economy, and engineering design. The teams also documented the attributes of their vehicles in the technical reports. The strategies and approaches to HEV design are analyzed on the basis of the data from each of the events. The overall performance for promising HEV approaches is also examined.
Technical Paper

Design Diversity of HEVs with Example Vehicles from HEV Competitions

Hybrid Electric Vehicles (HEVs) can be designed and operated to satisfy many different operational missions. The three most common HEV types differ with respect to component sizing and operational capabilities. However, HEV technology offers design opportunities beyond these three types. This paper presents a detailed HEV categorization process that can be used to describe unique HEV prototype designs entered in college and university-level HEV design competitions. We explored possible energy management strategies associated with designs that control the utilization of the two on-board energy sources and use the competition vehicles to illustrate various configurations and designs that affect the vehicle's capabilities. Experimental data is used to help describe the details of the power control strategies which determine how the engine and electric motor of HEV designs work together to provide motive power to the wheels.
Technical Paper

The Effects of Oxygen-Enriched Intake Air on FFV Exhaust Emissions Using M85

This paper presents the results of emission tests of a flexible fuel vehicle (FFV) powered by an SI engine, fueled by M85, and supplied with oxygen-enriched intake air containing nominal 21%, 23%, and 25% oxygen (by volume). Emission data were collected by following the standard federal test procedure (FTP) and U.S. Environmental Protection Agency's (EPA's) “off-cycle” test EPA-REP05. Engine-out total hydrocarbons (THCs) and unburned methanol were considerably reduced in the entire FTP cycle when the oxygen content of the intake air was either 23% or 25%. However, CO emissions did not vary appreciably, and NOx emissions were higher. Formaldehyde emissions were reduced by about 53% in bag 1, 84% in bag 2, and 59% in bag 3 of the FTP cycle when 25% oxygen-enriched intake air was used.
Technical Paper

Testing Hybrid Electric Vehicle Emission and Fuel Economy at the 1994 DOE/SAE Hybrid Electric Vehicle Challenge

From June 12-20, 1994, an engineering design competition called the 1994 Hybrid Electric Vehicle (HEV) Challenge was held in Southfield, Michigan. This collegiate-level competition, which involved 36 colleges and universities from across North America, challenged the teams to build a superior HEV. One component of this comprehensive competition was the emissions event. Special HEV testing procedures were developed for the competition to find vehicle emissions and correct for battery state-of-charge while fitting into event time constraints. Although there were some problems with a newly-developed data acquisition system, we were able to get a full profile of the best performing vehicles as well as other vehicles that represent typical levels of performance from the rest of the field. This paper will explain the novel test procedures, present the emissions and fuel economy results, and provide analysis of second-by-second data for several vehicles.
Technical Paper

The 1990 SAE Methanol Challenge: Summary of a Successful Student Design Competition

A follow-up to the 1989 Society of Automotive Engineers (SAE) Methanol Marathon called the Methanol Challenge was held in April 1990. One of a series of engineering student competitions using alternative fuels organized and conducted by the Center for Transportation Research at Argonne National Laboratory, the Methanol Challenge pushed the technology for dedicated M85 (85% methanol, 15% hydrocarbon fuel) methanol passenger cars to new levels. The event included complete federal exhaust emissions, cold-start and driveability, performance, and fuel economy testing. Twelve teams of student engineers from the United States and Canada competed in the Challenge using Chevrolet Corsicas donated by General Motors (GM) to the schools. The winning car, from the University of Tennessee, simultaneously demonstrated extremely low emissions, dramatically increased performance, and significantly improved fuel economy.
Technical Paper

Reduction in Global Warming due to Fuel Economy Improvements and Emissions Control of Criteria Pollutants: New US. Light-Duty Vehicles (19684991)

This paper explores the impact of U.S. emission controls and fuel economy improvements on the global warming potential (GWP) of new light-duty vehicles. Fuel economy improvements have reduced the GWP of both passenger cars and light-duty trucks by lowering the per mile emissions of carbon dioxide (CO2). Further GWP reductions have been achieved by emission standards for criteria pollutants: carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NOx). The GWP of a criteria pollutant was calculated by multiplying the emission rate by a relative global warming factor to obtain a CO2 equivalent emission rate. Both CO2 and criteria pollutant emission rates per vehicle have decreased substantially for new light-duty vehicles over the period from 1968 to 1991. Over that period, the GWP from CO2 was reduced by almost 50% in new vehicles by improving fuel economy.
Technical Paper

The Natural Gas Vehicle Challenge '92: Exhaust Emission Testing and Results

The Natural Gas Vehicle (NGV) Challenge '92, was organized by Argonne National Laboratory. The main sponsors were the U.S. Department of Energy the Energy, Mines, and Resources - Canada, and the Society of Automotive Engineers. It resulted in 20 varied approaches to the conversion of a gasoline-fueled, spark ignited, internal combustion engine to dedicated natural gas use. Starting with a GMC Sierra 2500 pickup truck donated by General Motors, teams of college and university student engineers worked to optimize Chevrolet V-8 engines operating on natural gas for improved emissions, fuel economy, performance, and advanced design features. This paper focuses on the results of the emission event, and compares engine mechanical configurations, engine management systems, catalyst configurations and locations, and approaches to fuel control and the relationship of these parameters to engine out and tailpipe emissions of regulated exhaust constituents.
Technical Paper

Oxygen-Enriched Diesel Engine Experiments with a Low-Grade Fuel

A test series was conducted on a six-cylinder diesel engine to study the impacts of controlled factors (i.e., oxygen content of the combustion air, water content of the fuel, fuel-flow rate, and fuel-injection timing) on engine performance and emissions using Taguchi techniques. Separate experiments were conducted using a commercial-grade No. 2-diesel and a lower-grade No. 6-diesel fuel. This paper reports the test results for No. 6 fuel. Oxygen enrichment improved the combustion process with the lower-grade fuel. There was no observable change in turbocharger performance due to oxygen enrichment. The results showed significant reductions in smoke and particulate emissions, a small increase in thermal efficiency and a large increase in NOx emissions when oxygen-enriched air was used. The effect of water-emulsified fuel on NOx emissions was negligible.
Technical Paper

The Potential Benefits of Intake Air Oxygen Enrichment in Spark Ignition Engine Powered Vehicle

A production spark ignition engine powered vehicle (3.1-L Chevrolet Lumina, model year 1990) was tested with oxygen-enriched intake air containing 25 and 28% oxygen by volume to determine if (1) the vehicle would run without difficulties and (2) there would be emissions benefits. Standard Federal Test Procedure (FTP) emissions test cycles were run satisfactorily without vehicle performance anomalies. The results of catalytic converter-out (engine with a three-way catalytic converter in place) emissions showed that both carbon monoxide and hydrocarbons were reduced significantly in all three phases of the emissions test cycle, compared with normal air (21 % oxygen). Carbon monoxide emissions from the engine (with the three-way catalytic converter removed) were significantly reduced in the cold-phase of the test cycle. The catalytic converter also had an improved carbon monoxide conversion efficiency under the oxygen-enriched air conditions.
Technical Paper

Analysis of a Diesel-Electric Hybrid Urban Bus System

A hybrid bus powered by a diesel engine and a battery pack has been analyzed over an idealized bus-driving cycle in Chicago. Three hybrid configurations, two parallel and one series, have been evaluated. The results indicate that the fuel economy of a hybrid bus, taking into account the regenerative braking, is comparable with that of a conventional diesel bus. Life-cycle costs are slightly higher because of the added weight and cost of the battery.
Technical Paper

Extension of the Lower Load Limit of Gasoline Compression Ignition with 87 AKI Gasoline by Injection Timing and Pressure

Previous work has demonstrated the capabilities of gasoline compression ignition to achieve engine loads as high as 19.5 bar BMEP with a production multi-cylinder diesel engine using gasoline with an anti-knock index (AKI) of 87. In the current study, the low load limit of the engine was investigated using the same engine hardware configurations and 87 AKI fuel that was used to achieve 19.5 bar BMEP. Single injection, “minimum fueling” style injection timing and injection pressure sweeps (where fuel injection quantity was reduced at each engine operating condition until the coefficient of variance of indicated mean effective pressure rose to 3%) found that the 87 AKI test fuel could run under stable combustion conditions down to a load of 1.5 bar BMEP at an injection timing of −30 degrees after top dead center (°aTDC) with reduced injection pressure, but still without the use of intake air heating or uncooled EGR.
Technical Paper

Global Sensitivity Analysis of a Diesel Engine Simulation with Multi-Target Functions

Global Sensitivity Analysis (GSA) is conducted for a diesel engine simulation to understand the sensitivities of various modeling constants and boundary conditions in a global manner with regards to multi-target functions such as liquid length, ignition delays, combustion phasing, and emissions. The traditional local sensitivity analysis approach, which involves sequential perturbation of model constants, does not provide a complete picture since all the parameters can be uncertain. However, this approach has been studied extensively and is advantageous from a computational point of view. The GSA simultaneously incorporates the uncertainty information for all the relevant boundary conditions, modeling constants, and other simulation parameters. A global analysis is particularly useful to address the important parameters in a model where the response of the targets to the values of the variables is highly non-linear.
Technical Paper

Computational Investigation of Low Load Operation in a Light-Duty Gasoline Direct Injection Compression Ignition [GDICI] Engine Using Single-Injection Strategy

The use of gasoline in a compression ignition engine has been a research focus lately due to the ability of gasoline to provide more premixing, resulting in controlled emissions of the nitrogen oxides [NOx] and particulate matter. The present study assesses the reactivity of 93 RON [87AKI] gasoline in a GM 1.9L 4-cylinder diesel engine, to extend the low load limit. A single injection strategy was used in available experiments where the injection timing was varied from −42 to −9 deg ATDC, with a step-size of 3 deg. The minimum fueling level was defined in the experiments such that the coefficient of variance [COV] of indicated mean effective pressure [IMEP] was less than 3%. The study revealed that injection at −27 deg ATDC allowed a minimum load of 2 bar BMEP. Also, advancement in the start of injection [SOI] timing in the experiments caused an earlier CA50, which became retarded with further advancement in SOI timing.
Technical Paper

Impact of Blending Gasoline with Isobutanol Compared to Ethanol on Efficiency, Performance and Emissions of a Recreational Marine 4-Stroke Engine

This study evaluates iso-butanol as a pathway to introduce higher levels of alternative fuels for recreational marine engine applications compared to ethanol. Butanol, a 4-carbon alcohol, has an energy density closer to gasoline than ethanol. Isobutanol at 16 vol% blend level in gasoline (iB16) exhibits energy content as well as oxygen content identical to E10. Tests with these two blends, as well as indolene as a reference fuel, were conducted on a Mercury 90 HP, 4-stroke outboard engine featuring computer controlled sequential multi-port Electronic Fuel Injection (EFI). The test matrix included full load curves as well as the 5-mode steady-state marine engine test cycle. Analysis of the full load tests suggests that equal full load performance is achieved across the engine speed band regardless of fuel at a 15-20°C increase in exhaust gas temperatures for the alcohol blends compared to indolene.
Technical Paper

Effect of Fuel Parameters on Emissions from a Direct Injection Spark Ignition Engine During Constant Speed, Variable Load Tests

A 1998 Toyota Corona passenger car with a direct injection spark ignition (DISI) engine was tested at constant engine speed (2000 rpm) over a range of loads. Engine-out and tailpipe emissions of gas phase species were measured each second. This allowed examination of the engine-out emissions for late and early injection. Seven fuels were used for these tests: five blended fuels and two pure hydrocarbon fuels. These seven fuels can be divided into groups for examination of the effects of volatility, MTBE, and structure (an aromatic versus an i-alkane). Correlations between the fuel properties and their effects on emissions are presented. Use of steady state tests rather than driving cycles to examine fuel effects on emissions eliminates the complications resulting from accelerations, decelerations, and changes of injection timing but care had to be taken to account for the periodic regenerations of the lean NOx trap/catalyst.
Journal Article

Impact of Cetane Number on Combustion of a Gasoline-Diesel Dual-Fuel Heavy-Duty Multi-Cylinder Engine

Dual-fuel combustion using liquid fuels with differing reactivity has been shown to achieve low-temperature combustion with moderate peak pressure rise rates, low soot and NOx emissions, and high indicated efficiency. Varying fractions of gasoline-type and diesel-type fuels enable operation across a range of low- and mid-load operating conditions. Expanding the operating range to cover the full operating range of a heavy-duty diesel engine, while maintaining the efficiency and emissions benefits, is a key objective. With dissimilar properties of the two utilized fuels lying at the heart of the dual-fuel concept, a tool for enabling this load range expansion is altering the properties of the two test fuels - this study focuses on altering the reactivity of the diesel fuel component. Tests were conducted on a 13L six-cylinder heavy-duty diesel engine modified to run dual-fuel combustion with port gasoline injection to supplement the direct diesel injection.