Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Analysis and Model Validation of the Toyota Prius Prime

The Toyota Prius Prime is a new generation of Toyota Prius plug-in hybrid electric vehicle, the electric drive range of which is 25 miles. This version is improved from the previous version by the addition of a one-way clutch between the engine and the planetary gear-set, which enables the generator to add electric propulsive force. The vehicle was analyzed, developed and validated based on test data from Argonne National Laboratory’s Advanced Powertrain Research Facility, where chassis dynamometer set temperature can be controlled in a thermal chamber. First, we analyzed and developed components such as engine, battery, motors, wheels and chassis, including thermal aspects based on test data. By developing models considering thermal aspects, it is possible to simulate the vehicle driving not only in normal temperatures but also in hot, cold, or warmed-up conditions.
Technical Paper

Model Validation of the Chevrolet Volt 2016

Validation of a vehicle simulation model of the Chevrolet Volt 2016 was conducted. The Chevrolet Volt 2016 is equipped with the new “Voltec” extended-range propulsion system introduced into the market in 2016. The second generation Volt powertrain system operates in five modes, including two electric vehicle modes and three extended-range modes. Model development and validation were conducted using the test data performed on the chassis dynamometer set in a thermal chamber of Argonne National Laboratory’s Advanced Powertrain Research Facility. First, the components of the vehicle, such as the engine, motor, battery, wheels, and chassis, were modeled, including thermal aspects based on the test data. For example, engine efficiency changes dependent on the coolant temperature, or chassis heating or air-conditioning operations according to the ambient and cabin temperature, were applied.
Journal Article

Automated Model Initialization Using Test Data

Building a vehicle model with sufficient accuracy for fuel economy analysis is a time-consuming process, even with the modern-day simulation tools. Obtaining the right kind of data for modeling a vehicle can itself be challenging, given that while OEMs advertise the power and torque capability of their engines, the efficiency data for the components or the control algorithms are not usually made available for independent verification. The U.S. Department of Energy (DOE) funds the testing of vehicles at Argonne National Laboratory, and the test data are publicly available. Argonne is also the premier DOE laboratory for the modeling and simulation of vehicles. By combining the resources and expertise with available data, a process has been created to automatically develop a model for any conventional vehicle that is tested at Argonne. This paper explains the process of analyzing the publicly available test data and computing the parameters of various components from the analysis.