Refine Your Search

Search Results

Viewing 1 to 10 of 10
Journal Article

Multi-Dimensional Modeling of the Soot Deposition Mechanism in Diesel Particulate Filters

2008-04-14
2008-01-0444
A computational, three-dimensional approach to investigate the behavior of diesel soot particles in the micro-channels of wall-flow Diesel Particulate Filters is presented. The KIVA3V CFD code, already extended to solve the 2D conservation equations for porous media materials [1], has been enhanced to solve in 2-D and 3-D the governing equations for reacting and compressible flows through porous media in non axes-symmetric geometries. With respect to previous work [1], a different mathematical approach has been followed in the implementation of the numerical solver for porous media, in order to achieve a faster convergency as source terms were added to the governing equations. The Darcy pressure drop has been included in the Navier-Stokes equations and the energy equation has been extended to account for the thermal exchange between the gas flow and the porous wall.
Journal Article

The 3Dcell Approach for the Acoustic Modeling of After-Treatment Devices

2011-09-11
2011-24-0215
In the last decades the continuously tightening limitations on pollutant emissions has led to an extensive adoption of after-treatment devices on the exhaust systems of modern internal combustion engines. While these devices are primarily introduced for reducing and controlling the emissions, they also play an important role influencing the wave motion inside the exhaust system and so affecting the acoustics and the performances of the engine. In this paper a novel approach is proposed for the modeling of two after-treatment devices: the catalyst and the Diesel Particulate Filter. The models are based on a fast quasi-3D approach, named 3Dcell, originally developed by the authors for the acoustic modeling of silencers. This approach allows to model the wave motion by solving the momentum equation along the three directions.
Journal Article

Impact of FAME Content on the Regeneration Frequency of Diesel Particulate Filters (DPFs)

2014-04-01
2014-01-1605
Modern diesel vehicles utilize two technologies, one fuel based and one hardware based, that have been motivated by recent European legislation: diesel fuel blends containing Fatty Acid Methyl Esters (FAME) and Diesel Particulate Filters (DPF). Oxygenates, like FAME, are known to reduce PM formation in the combustion chamber and reduce the amount of soot that must be filtered from the engine exhaust by the DPF. This effect is also expected to lengthen the time between DPF regenerations and reduce the fuel consumption penalty that is associated with soot loading and regeneration. This study investigated the effect of FAME content, up to 50% v/v (B50), in diesel fuel on the DPF regeneration frequency by repeatedly running a Euro 5 multi-cylinder bench engine over the European regulatory cycle (NEDC) until a specified soot loading limit had been reached.
Technical Paper

Control Strategies for Peak Temperature Limitation in DPF Regeneration Supported by Validated Modeling

2007-04-16
2007-01-1127
One of the main challenges in developing cost-effective diesel particulate filters is to guarantee a thermally safe regeneration under all possible conditions on the road. Uncontrolled regenerations occur when the soot reaction rate is so high that the cooling effect of the incoming exhaust gas is insufficient to keep the temperature below the required limit for material integrity. These conditions occur when the engine switches to idle while the filter is already hot enough to initiate soot oxidation, typically following engine operation at high torque and speed or active filter regeneration. The purpose of this work is to investigate engine management techniques to reduce the reaction rate during typical failure mode regenerations. A purely experimental investigation faces many difficulties, especially regarding measurement accuracy, repeatability in filter soot loading, and repeatability in the regeneration protocol.
Technical Paper

Optimization Methodologies for DPF Substrate-catalyst Combinations

2009-04-20
2009-01-0291
As the Diesel Particulate Filter (DPF) technology is nowadays established, research is currently focusing on meeting the emission and durability requirements by proper system design. This paper focuses on the optimum combination between the catalytic coating and substrate structural properties using experimental and simulation methodologies. The application of these methodologies will be illustrated for the case of SiC substrates coated with innovative sol-gel coatings. Coated samples are characterized versus their uncoated counterparts. Multi-dimensional DOC and DPF simulation models are used to study several effects parametrically and increase our understanding on the governing phenomena. The comparative analysis of DOC/DPF systems covers filtration – pressure drop characteristics, CO/HC/NO oxidation performance, effect of washcoat amount and catalyst dispersion on oxidation activity and finally passive regeneration performance.
Technical Paper

Development of a Multi-Dimensional Parallel Solver for Full-Scale DPF Modeling in OpenFOAM®

2009-06-15
2009-01-1965
A new fast and efficient parallel numerical solver for reacting and compressible flows through porous media has been developed in the OpenFOAM® (Open Field Operation and Manipulation) CFD Toolbox. With respect to the macroscopic model for porous media originally available in OpenFOAM®, a different mathematical approach has been followed: the new implemented solver makes use of the physical normal components resulting from the velocity expansion in the unit orthogonal vector basis to compute the Darcy pressure drop across the porous medium. Also, an additional sink term to account for the increased flow friction over the porous wall has been included into the momentum equation. In the new solver, the pressure correction equation is still able to achieve a faster convergency at very low permeability of the medium, also when it is associated with grid non-orthogonality.
Technical Paper

Design and Application of Catalyzed Metal Foam Particulate Filters

2006-10-16
2006-01-3284
This paper presents experimental and modeling results related to the application of a novel material as a diesel particulate filter substrate. The material, trademarked as INCOFOAM® HighTemp, is a Ni-based superalloy foam. The material can be produced in sheet form with a large range of microstructure parameters. Thanks to the mechanical properties of the sheets, they can be flexibly shaped in various forms. The foam can be washcoated with active catalytic material to promote regeneration. The experimental testing covers flow and pressure drop behavior with air and exhaust gas, filtration efficiency measurements as function of particle size and regeneration rate measurements. The testing starts from mini-scale reactors and proceeds to real exhaust testing on the engine bench as well as vehicle tests with legislated driving cycles. Special emphasis is given to the characterization of the foam as a catalyst substrate.
Technical Paper

A Modeling Study of Soot and De-NOx Reaction Phenomena in SCRF Systems

2011-06-09
2011-37-0031
The development of thermally durable zeolite NH3/Urea-SCR formulations coupled with that of high porosity filters substrates has opened the way to integrate PM and NOx control into a single device, namely an SCR-coated Diesel Particulate Filter (SCRF). A few experimental works are already present in the literature regarding SCRF systems, mainly addressing the DeNOx performances of the system (in both presence and absence of soot) under both steady state and transient conditions. The purpose of the present work is to perform a simulation study focused on phenomena which are expected to play key roles in SCRF systems, such as coupling of reaction and diffusion phenomena, soot effect on DeNOx activity, SCR coating effect on soot regeneration and filtration efficiency and competition between soot oxidation and DeNOx processes involving NO2.
Technical Paper

Measurement and Intra-Layer Modeling of Soot Density and Permeability in Wall-flow Filters

2006-04-03
2006-01-0261
The objective of this study is to study the soot layer density and permeability in wall-flow diesel particulate filters. Knowledge of the soot morphology as function of the operating conditions is important for the design and on-board control of Diesel Particulate Filters (DPFs). The experimental set-up relies on a specially designed soot loading procedure on single-channel cordierite filters. The experimental conditions simulate real-world as close as possible regarding the filtration velocity, temperature and soot quality, since the sampling is done in real exhaust. By cutting, weighing and imaging the single channel filters it is possible to measure with accuracy the soot layer thickness as deposited under different operating conditions. Combined with pressure drop measurements and modeling, it is further possible to evaluate the soot layer permeability.
Technical Paper

Computer Aided Engineering in the Development of Diesel Exhaust Aftertreatment Systems

1999-03-01
1999-01-0458
Computer Aided Engineering (CAE) Methodologies are increasingly being applied to assist the design of SI-engine exhaust aftertreatment systems, in view of the stage III and IV emissions standards. Following this trend, the design of diesel exhaust aftertreatment systems is receiving more attention in view of the capabilities of recently developed mathematical models. The design of diesel exhaust systems must cope with three major aftertreatment categories: (i) diesel oxidation catalysts, (ii) diesel particulate filters and (iii) de-NOx catalytic converters. An integrated CAE methodology that could assist the design of all these classes of systems is described in this paper.
X