Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Keynote Presentation: Racing Green Endurance: An EV Record

2012-05-16
Racing Green Endurance: An EV Record will focus on what a small team of ambitious and talented engineers can do when they have a dream! Back in 2009, a team of graduates from Imperial College London came together to do something radical to change the public perception of electric vehicles forever. They came up with the idea to design and build the world's longest range electric car, and then drive it down the longest and toughest road in the world; the 26,000km Pan-American Highway! Racing Green Endurance: An EV Record will share the story from start to finish, and will also focus on the technology used to achieve such a feat, with particular mention of the electric motors. Presenter Alexander Schey, Imperial College London
Technical Paper

Effect of Gas Density and Temperature on Air Entrainment in a Transient Diesel Spray

1996-02-01
960862
The air entrainment in a transient diesel spray was studied using laser Doppler anemometry to provide information on the effect of gas density and temperature. The spray was injected vertically into a confined quiescent atmosphere and the entrained mass flow rate was evaluated by measuring the air velocity component normal to a cylindrical geometric surface surrounding the spray, and extending to about 200 nozzle diameters (50 mm). The experimental results, relative to a density range from 0.84 to 7.02 kg/m3 and a temperature range from 293 to 473 K, indicate that the non dimensional entrainment rate, averaged in time over the main injection period, depends on the distance from the nozzle and both gas density and temperature. A first analysis, based on the available data, allowed to quantify the dependence and provided a correlation with such variables.
Technical Paper

Regeneration of DPF at Low Temperatures with the Use of a Cerium Based Fuel Additive

1996-02-01
960135
A light duty truck with a naturally aspirated engine was equipped with a DPF (changing the exhaust pipe and eliminating the muffler) and operated on fuel doped with a cerium based additive in various concentrations. Tests were carried out on chassis dynamometer using the European urban cycle, but also under city driving conditions with maximum speeds up to 50 km/h and exhaust gas temperature up to 300°C. Under these conditions, it was observed that filter regeneration was always possible at relatively high particulate accumulation in the filter, while the effect on fuel consumption (as measured over the emission test cycles) was not detectable, compared to baseline data of the vehicle. Change in driving conditions from slow urban to highway with highly loaded trap led to spontaneous trap regeneration at higher temperatures, without effect on fuel consumption. This paper documents the operation of a fully passive DPF system for diesel light duty vehicles.
Technical Paper

Dynamic Tests of Racing Seats and Simulation with Vedyac Code

1998-11-16
983059
Dynamic tests have been performed on carbon fiber racing seats following the FIA regulations. The tests have shown, in rear impact tests, a relatively strong rebound leading to large forward bending of neck, and, in side impact tests, very large lateral displacement of the head, the latter protruding dangerously towards hard portions of the car structure. Stiffening the seat back by steel struts results in reducing strongly both the motion and the acceleration of the head. Simulations of the dynamics of the tests have been done with multi-body models, including the Hybrid III dummy and seat deflection, by means of the program VEDYAC. It has been found that computer simulation can predict very accurately the result of a test, provided the numerical models have been carefully calibrated to match the dummy tolerance bands. Once they have been calibrated and validated with a number of tests, the computer models can be very useful to extend the test results to different test conditions.
Technical Paper

Toothed Couplings for Diesel Engines: An Example of Steel Substitution With Fiber Reinforced Plastics

1996-04-01
91A100
The replacement with plastic of an important component, formerly in steel, in the timing drive of a heavily duty diesel engine has been studied and realized. The substituted part is the toothed coupling connecting the injection pump to the timing drive. Torque that stresses the coupling has been measured with laboratory tests. The tooth stresses have been calculated with FEM analysis. Finally, fatigue tests have been carried out directly on the engine at different loadings. The test results are consistent with the predicted behavior of this component.
Technical Paper

Cordierite Filter Durability with Cerium Fuel Additive: 100,000 km of Revenue Service in Athens

1992-02-01
920363
The first two of a series of traps retrofitted on a pilot fleet of 110 buses of the Athens Bus Corporation were removed for examination after 100,000 km of revenue service. These buses were gradually equipped with the ELBO Trap Oxidiser since the beginning of 1989 and are constantly operated on Cerium based fuel additive. The physical properties and the chemical composition of filters and ash residues were analysed by the filter manufacturers and the fuel additive producer. The results have shown that after two years of operation the filter material remained intact and the ash deposits (consisting mainly of CeO2) exhibit a limited interaction with the cordierite. More than 94% of these deposits are filtered by the monoliths and could be removed to a large extent with the application of conventional methods.
Technical Paper

Transient Behaviour of Turbocharged-Engined Vehicles Equipped with Diesel Particulate Traps

1992-02-01
920361
This paper presents a study of the transient behaviour of the turbocharged engine equipped with a diesel particulate trap. The trap is considered to be placed before the turbine, to fully exploit the high regeneration potential of the turbocharged engine. This necessitates some design changes to the exhaust system in front of the turbine, in order to keep a good turbocharger response. The fast temperature response of a light-weight exhaust manifold, partially offsets the effect of the trap thermal inertia. However, the turbocharger lag may deteriorate in some cases, due to the significant modifications produced by the trap dead volume on the pulse turbocharging system operation. This effect varies with trap size and mean pressure drop, and it could necessitate a new turbocharger matching.
Technical Paper

Catalytic Activity in the Regeneration of the Ceramic Diesel Particulate Trap

1992-02-01
920362
The rare occurrence during city driving of the exhaust temperature levels required for ceramic trap regeneration without catalytic aid, seems to be the main reason of delay in wide application of the trap. The use of catalysts seems to be more or less necessary. Study of the catalytic activity during trap regeneration had not been very effective so far. This holds equally true for the case of catalyzed trap as for the case of catalytic fuel additives. The lack of a satisfactory theory for the explanation and prediction of catalytic activity, directed international research and development towards the quest of the optimum catalyst, which could support a very simple and low-cost regeneration system. The new approach to the explanation of catalytic activity presented in this paper, denies the above assumption.
Technical Paper

Measurement of the Viscosity of Thin Films of Lubricants on Solid Surfaces

1991-10-01
912412
This paper describes the development of a thin film rheometer able to measure the viscosity of lubricant films of the order of 200 μm thickness on flat, solid surfaces. The rheometer consists of a small cylinder mounted on a piezo bimorph which is divided electrically into two halves. When an AC voltage is applied to the one half of the piezo it causes the flat surface of the cylinder to oscillate in its own plane with an amplitude of a few microns. This motion produces an AC output from the other half of the piezo. The flat face of the cylinder is held parallel to an oily test surface and the latter is supported on a micrometer stage so that the gap between the two surfaces can be adjusted. As the gap is narrowed the oil film dampens the sinusoidal motion of the cylinder and the extent of this damping can be used to determine the viscosity of the oil film between the surfaces.
Technical Paper

Considerations in Designing a Recovery Steam Generator for Incineration Plants

1992-08-03
929266
The design of recovery steam generators for incineration plants encounters certain specific problems, related to the nature of the exhausted gases, which, if not properly faced, can strongly condition the conduction of the whole system. Two problems, namely, demand for particular attention: the corrosion at high temperature and the formation of organochlorine compounds, in presence of ashes and/or deposits for definite temperature intervals. These phenomena can be controlled and minimized, whenever possible, by limiting to the greatest extent the regions where the temperatures of the metallic walls and of the ashes and/or deposits are within the critical interval.
Technical Paper

Effect of Spray-Wall Interaction on Air Entrainment in a Transient Diesel Spray

1993-03-01
930920
The influence of spray-wall interaction on air entrainment in an unsteady non-evaporating diesel spray was studied using laser Doppler anemometry. The spray was injected into confined quiescent air at ambient pressure and temperature and made to impact on a flat wall. The air velocity component normal to a cylindrical surface surrounding the spray was measured during the entire injection period, allowing to evaluate the time history of the entrained air mass flow rate. The influence of wall distance and spray impingement angle on air entrainment characteristics has been investigated and the results indicate that the presence of a wall increases the entrained mass flow rate in the region close to the surface, during the main injection period. Normal impingement appears to produce stronger effects than oblique incidence at 30 and 45 deg. A qualitative explanation of the results is also proposed, based on the drop-gas momentum exchange mechanism.
Technical Paper

Crash Performance of Rtm Composites for Automotive Applications

1996-04-01
91A120
This paper describes the experimental activity carried out at Aerospace Engineering Department of Politecnico di Milano about energy absorption capability of glass-epoxy RTM specimens, representative of automotive crash front structure sub-components. After the analysis of some automotive crashworthiness aspects, especially relevant to the structural adoption of composite materials, the specimen used and the technological route to produce them are described. Then experimental arrangements, test procedure and measurement technique, relevant to static and crash test are presented. Finally test results, reported in the form of numerical values, diagrams and high-velocity films are shown and critically commented.
Technical Paper

Solar Prototype for Shell-Eco Marathon Race

2017-03-28
2017-01-1260
Apollo is the name of a solar prototype vehicle of Politecnico di Milano (Technical University of Milan) that has been conceived and employed for the Shell Eco-marathon® Europe competition (SEM). The paper introduces the concept design, the detailed design, the construction, the indoor tests, the successful employment at SEM and the end-of-life of the prototype. Apollo is a three-wheeler with a single driving and steering wheel at the rear. A wing with solar cells provides part of the electric energy required for running. The conceptual design started from the accommodation of the driver inside the vehicle. A number of iterations focusing on CFD (computation fluid dynamics) and wind-tunnel tests allowed to refine the total drag to less than 2N at 35 km/h. The tyre characteristic was measured on a drum. The camber of front wheels was set to 4 deg which provided the least rolling resistance.
Technical Paper

Evolution of the Ride Comfort of Alfa Romeo Cars since 1955 until 2005

2017-03-28
2017-01-1484
The ride comfort of three Alfa Romeo cars, namely Giulietta (1955), Alfetta (1972) and 159 (2005) has been assessed both objectively and subjectively. The three cars belong to the same market segment. The aim is to let young engineers or graduate students understand how technology has evolved and eventually learn a lesson from the assessed trend. A number of cleats have been fixed at the ground and the three cars have traversed such uneven surface. The objective assessment of the ride comfort has been performed by means of accelerometers fixed at the seat rails, additionally a special dummy developed at Politecnico di Milano has been employed. The subjective assessment has been performed by a panel of passengers. The match between objective and subjective ratings is very good. Simple mathematical models have been employed to establish a (successful) comparison between experimental and computational results. The ride comfort differs substantially among the cars.
Technical Paper

Evaluation Between Engine Stop/Start and Cylinder Deactivation Technologies Under Southeast Asia Urban Driving Condition

2017-03-28
2017-01-0986
Engine stop/start and cylinder deactivation are increasingly in use to improve fuel consumption of internal combustion engine in passenger cars. The stop/start technology switches off the engine to whenever the vehicle is at a stand-still, typically in a highly-congested area of an urban driving. The inherent issue with the implementation of stop/start technology in Southeast Asia, with tropical climate such as Malaysia, is the constant demand for the air-conditioning system. This inevitably reduces the duration of engine switch-off when the vehicle at stop and consequently nullifying the benefit of the stop/start system. On the other hand, cylinder deactivation technology improves the fuel consumption at certain conditions during low to medium vehicle speeds, when the engine is at part load operation only. This study evaluates the fuel economy benefit between the stop/start and cylinder deactivation technologies for the actual Kuala Lumpur urban driving conditions in Malaysia.
Technical Paper

Effects of Fuel Properties Associated with In-Cylinder Behavior on Particulate Number from a Direct Injection Gasoline Engine

2017-03-28
2017-01-1002
The purpose of this work was to gain a fundamental understanding of which fuel property parameters are responsible for particulate emission characteristics, associated with key intermediate behavior in the engine cylinder such as the fuel film and insufficient mixing. Accordingly, engine tests were carried out using various fuels having different volatility and chemical compositions under different coolant temperature conditions. In addition, a fundamental spray and film visualization analysis was also conducted using a constant volume vessel, assuming the engine test conditions. As for the physical effects, the test results showed that a low volatility fuel displayed high particulate number (PN) emissions when the injection timing was advanced. The fundamental test clearly showed that the amount of fuel film on the impingement plate increased under such operating conditions with a low volatility fuel.
Technical Paper

Nonlinearities in Friction Brake NVH - Experimental and Numerical Studies

2014-09-28
2014-01-2511
Industry and academia agree that brake squeal is a nonlinear phenomenon. Consequently, using solely linear finite-element (FE) models and assessing the tendency of a brake system to squeal exclusively on the stability of the trivial solution is not appropriate. However, the latter approach - in the brake community known as complex eigenvalue analysis (CEA) - is extensively used in industry. Until now, nonlinear simulation approaches considering existence and stability of periodic solutions are mostly limited to minimal models. Among the variety of reasons for this the complexity of large-scale nonlinear models as well as the identification of nonlinear material and system parameters are crucial. This contribution discusses the relevance of nonlinearities in friction brake noise, vibration, harshness (NVH) and presents a novel simulation approach for brake squeal.
Technical Paper

Suspension Systems: Some New Analytical Formulas for Describing the Dynamic Behavior

2018-04-03
2018-01-0554
The paper presents some new and unreferenced analytical formulae describing the dynamic behaviour of the suspension system of road or off-road vehicles. The quarter car model (2 degrees of freedom) is considered, the suspension can be either passive or active. Passive suspensions can be simplified as the spring-damper combination or the spring-damper combination with an additional in series spring (representing, e.g., the rubber bushing at the top of a McPherson strut or the rubber bushing at the end joints of the damper). The mathematical system is linear and the excitation is given by a random stationary and ergodic process. The standard deviations in analytical form are given referring to, respectively, the vehicle body acceleration, the relative displacement between sprung and unsprung mass, and the force at the ground. The so called invariant points of the frequency response functions are derived for both active and passive suspension.
Technical Paper

Description of a Novel Concentric Rotary Engine

2018-04-03
2018-01-0365
The present work presents the concept of a new rotary engine, and provides first investigations for its implementation in the energy sector. The main focus of this work is to provide a theoretical description of the engine and its differences from the state-of-the-art technologies. Its innovative principle consists of concentric operation, with two pistons of different rotation radius and the addition of a third intermediate chamber between the compression and combustion chamber. A description of the engine’s physical model is provided, followed by an analysis of the selected specific geometrical features. Additionally, a thermodynamic analysis clarifies the operational advantage compared to the existing cycles and, finally, a numerical investigation on the engine’s bulk performance is provided to quantify the anticipated results of the theoretical analysis.
Technical Paper

Engine Operational Benefits with Cylinder Deactivation in Malaysian Urban Driving Conditions

2015-04-14
2015-01-0983
Cylinder deactivation has been utilized by vehicle manufacturers since the 80's to improve fuel consumption and exhaust emissions. Cylinder deactivation is achieved by cutting off fuel supply and ignition in some of the engine cylinders, while their inlet and outlet valves are fully closed. The vehicle demand during cylinder deactivation is sustained by only the firing cylinders, hence increasing their indicated power. Conventionally, half the number of cylinders are shut at certain driving conditions, which normally at the lower demand regime. An optimal strategy will ensure cylinder deactivation contributes to the fuel saving without compromising the vehicle drivability. Cylinder deactivation has been documented to generally improve fuel consumption between 6 to 25 %, depending on the type-approval test drive cycle. However, type-approval test has been reported to differ from the “real-world” fuel consumption values.
X