Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

A New Miniaturized Sensor for Ultra-Fast On-Board Soot Concentration Measurements

2017-03-28
2017-01-1008
In this article we present a design of a new miniaturized sensor with the capacity to measure exhaust particle concentrations on board vehicles and engines. The sensor is characterized by ultra-fast response time, high sensitivity, and a wide dynamic range. In addition, the physical dimensions of the sensor enable its placement along the exhaust line. The concentration response and temporal performance of a prototype sensor are discussed and characterized with aerosol laboratory test measurements. The sensor performance was also tested with actual engine exhaust in both chassis and engine dynamometer measurements. These measurements demonstrate that the sensor has the potential to meet and even exceed any requirements around the world in terms of on-board diagnostic (OBD) sensitivity and frequency of monitoring.
Technical Paper

Applicability of the Pegasor Particle Sensor to Measure Particle Number, Mass and PM Emissions

2013-09-08
2013-24-0167
The Pegasor Particle Sensor (PPS) has been earlier presented by Ntziachristos et al. (SAE Paper 2011-01-0626) as a novel small and robust instrument that can be directly installed in the exhaust line to measure exhaust particles without any dilution. The instrument is based on the electrical detection of aerosol. It is increasingly being used to measure exhaust particles from engines and vehicles with different exhaust configurations. In this study, a number of tests have been conducted using two sensors in parallel, one directly installed in the tailpipe and one installed in the CVS, side by side to the PM sampling filter. Aim of the study was to make recommendations on the proper use of the sensor and to check how the sensor signal compares to particulate mass, soot concentration, and particle number. A first finding is that external heating has to be provided to the sensor to avoid condensation.
X