Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Modeling of Heat and Mass Transfer in a TEC-Driven Lyophilizer

2006-07-17
2006-01-2185
Dewatering of wet waste during space exploration missions is important for crew safety as it stabilizes the waste. It may also be used to recover water and serve as a preconditioning step for waste compaction. A thermoelectric cooler (TEC)- driven lyophilizer is under development at NASA Ames Research Center for this purpose. It has three major components: (i) an evaporator section where water vapor sublimes from the frozen waste, (ii) a condenser section where this water vapor deposits as ice, and (iii) a TEC section which serves as a heat pump to transfer heat from the condenser to the evaporator. This paper analyses the heat and mass transfer processes in the lyophilizer in an effort to understand the ice formation behavior in the condenser. The analysis is supported by experimental observations of ice formation patterns in two different condenser units.
Technical Paper

Carbon Production in Space from Pyrolysis of Solid Waste

2006-07-17
2006-01-2183
Pyrolysis processing of solid waste in space will inevitably lead to carbon formation as a primary pyrolysis product. The amount of carbon depends on the composition of the starting materials and the pyrolysis conditions (temperature, heating rate, residence time, pressure). Many paper and plastic materials produce almost no carbon residue upon pyrolysis, while most plant biomass materials or human wastes will yield up to 20-40 weight percent on a dry, as-received basis. In cases where carbon production is significant, it can be stored for later use to produce CO2 for plant growth. Alternatively it can be partly gasified by an oxidizing gas (e.g., CO2, H2O, O2) in order to produce activated carbon. Activated carbons have a unique capability of strongly absorbing a great variety of species, ranging from SO2 and NOx, trace organics, mercury, and other heavy metals.
Technical Paper

Fluid Dynamics Assessment of the VPCAR Water Recovery System in Partial and Microgravity

2006-07-17
2006-01-2131
The Vapor Phase Catalytic Ammonia Removal (VPCAR) system is being developed to recycle water for future NASA Exploration Missions. Testing was recently conducted on NASA's C-9B Reduced Gravity Aircraft to determine the microgravity performance of a key component of the VPCAR water recovery system. Six flights were conducted to evaluate the fluid dynamics of the Wiped-Film Rotating Disk (WFRD) distillation component of the VPCAR system in microgravity, focusing on the water delivery method. The experiments utilized a simplified system to study the process of forming a thin film on a disk similar to that in the evaporator section of VPCAR. Fluid issues are present with the current configuration, and the initial alternative configurations were only partial successful in microgravity operation. The underlying causes of these issues are understood, and new alternatives are being designed to rectify the problems.
Technical Paper

The Design and Testing of a Fully Redundant Regenerative CO2 Removal System (RCRS) for the Shuttle Orbiter

2001-07-09
2001-01-2420
Research into increased capacity solid amine sorbents has found a candidate (SA9T) that will provide enough increase in cyclic carbon dioxide removal capacity to produce a fully redundant Regenerative Carbon Dioxide Removal System (RCRS). This system will eliminate the need for large quantities of backup LiOH, thus gaining critical storage space on board the shuttle orbiter. This new sorbent has shown an ability to package two fully redundant (four) sorbent beds together with their respective valves, fans and plumbing to create two operationally independent systems. The increase in CO2 removal capacity of the new sorbent will allow these two systems to fit within the envelope presently used by the RCRS. This paper reports on the sub-scale amine testing performed in support of the development effort. In addition, this paper will provide a preliminary design schematic of a fully redundant RCRS.
Technical Paper

Lyophilization for Water Recovery

2001-07-09
2001-01-2348
An energy-efficient lyophilization technique is being developed to recover water from highly contaminated spacecraft waste streams. In the lyophilization process, water in an aqueous waste is frozen and then sublimed, separating the waste into a dried solid material and liquid water. This technology is ideally suited to applications such as the Mars Reference Mission, where water recovery rates approaching 100% are desirable but production of CO2 is not. Candidate wastes include feces, concentrated brines from water processors, and other solid wastes that contain water. To operate in microgravity, and to minimize power consumption, thermoelectric heat pumps can be used in place of traditional fluid cycle heat pumps. A mathematical model of a thermoelectric lyophilizer is described and used to generate energy use and processing rate estimates.
Technical Paper

Weathering of Thermal Control Coatings

2007-07-09
2007-01-3020
Spacecraft radiators reject heat to their surroundings. Radiators can be deployable or mounted on the body of the spacecraft. NASA's Crew Exploration Vehicle is to use body mounted radiators. Coatings play an important role in heat rejection. The coatings provide the radiator surface with the desired optical properties of low solar absorptance and high infrared emittance. These specialized surfaces are applied to the radiator panel in a number of ways, including conventional spraying, plasma spraying, or as an appliqué. Not specifically designed for a weathering environment, little is known about the durability of conventional paints, coatings, and appliqués upon exposure to weathering and subsequent exposure to solar wind and ultraviolet radiation exposure. In addition to maintaining their desired optical properties, the coatings must also continue to adhere to the underlying radiator panel.
Technical Paper

Overview of Potable Water Systems on Spacecraft Vehicles and Applications for the Crew Exploration Vehicle (CEV)

2007-07-09
2007-01-3259
Providing water necessary to maintain life support has been accomplished in spacecraft vehicles for over forty years. This paper will investigate how previous U.S. space vehicles provided potable water. The water source for the spacecraft, biocide used to preserve the water on-orbit, water stowage methodology, materials, pumping mechanisms, on-orbit water requirements, and water temperature requirements will be discussed. Where available, the hardware used to provide the water and the general function of that hardware will also be detailed. The Crew Exploration Vehicle (CEV or Orion) water systems will be generically discussed to provide a glimpse of how similar they are to water systems in previous vehicles. Conclusions, questions, and recommendations on strategies that could be applied to CEV based on previous spacecraft water system lessons learned will be made.
Technical Paper

Crew Exploration Vehicle Environmental Control and Life Support Fire Protection Approach

2007-07-09
2007-01-3255
As part of preparing for the Crew Exploration Vehicle (CEV), the National Aeronautics and Space Administration (NASA) worked on developing the requirements to manage the fire risk. The new CEV poses unique challenges to current fire protection systems. The size and configuration of the vehicle resembles the Apollo capsule instead of the current Space Shuttle or the International Space Station. The smaller free air volume and fully cold plated avionic bays of the CEV requires a different approach in fire protection than the ones currently utilized. The fire protection approach discussed in this paper incorporates historical lessons learned and fire detection and suppression system design philosophy spanning from Apollo to the International Space Station.
Technical Paper

Compaction and Drying in a Low-Volume, Deployable Commode

2007-07-09
2007-01-3264
We present a device for collecting and storing feces in microgravity that is user-friendly yet suitable for spacecraft in which cabin volume and mass are constrained. On Apollo missions, the commode function was served using disposable plastic bags, which proved time-consuming and caused odor problems. On Skylab, the space shuttle, and the International Space Station, toilets have used airflow beneath a seat to control odors and collect feces. We propose to incorporate airflow into a system of self-compacting, self-drying collection and stowage bags, providing the benefits of previous commodes while minimizing mass and volume. Each collection bag consists of an inner layer of hydrophobic membrane that is permeable to air but not liquid or solid waste, an outer layer of impermeable plastic, and a collapsible spacer separating the inner and outer layers. Filled bags are connected to space vacuum, compacting and drying their contents.
Technical Paper

Waste Compaction Technology Development for Human Space Exploration Missions

2007-07-09
2007-01-3265
Waste management is a critical component of life support systems for manned space exploration. Human occupied spacecraft and extraterrestrial habitats must be able to effectively manage the waste generated throughout the entire mission duration. The requirements for waste systems may vary according to specific mission scenarios but all waste management operations must allow for the effective collection, containment, processing, and storage of unwanted materials. NASA's Crew Exploration Vehicle usually referred to as the CEV, will have limited volume for equipment and crew. Technologies that reduce waste storage volume free up valuable space for other equipment. Waste storage volume is a major driver for the Orion waste compactor design. Current efforts at NASA Ames Research Center involve the development of two different prototype compactors designed to minimize trash storage space.
Technical Paper

IVA/EVA Life Support Umbilical System

2007-07-09
2007-01-3228
For NASA's Constellation Program, an Intravehicular Activity (IVA) and Extravehicular Activity (EVA) Life Support Umbilical System (LSUS) will be required to provide environmental protection to the suited crew during Crew Exploration Vehicle (CEV) cabin contamination or depressurization and contingency EVAs. The LSUS will provide the crewmember with ventilation, cooling, power, communication, and data, and will also serve as a crew safety restraint during contingency EVAs. The LSUS will interface with the Vehicle Interface Assembly (VIA) in the CEV and the Suit Connector on the suit. This paper describes the effort performed to develop concept designs for IVA and EVA umbilicals, universal multiple connectors, handling aids and stowage systems, and VIAs that meet NASA's mission needs while adhering to the important guiding principles of simplicity, reliability, and operability.
Technical Paper

Reactive Carbon from Life Support Wastes for Incinerator Flue Gas Cleanup

2000-07-10
2000-01-2283
This paper presents the results from a joint research initiative between NASA Ames Research Center and Lawrence Berkeley National lab. The objective of the research is to produce activated carbon from life support wastes and to use the activated carbon to adsorb and chemically reduce the NOx and SO2 contained in incinerator flue gas. Inedible biomass waste from food production is the primary waste considered for conversion to activated carbon. Results to date show adsorption of both NOx and SO2 in activated carbon made from biomass. Conversion of adsorbed NOx to nitrogen has also been observed.
Technical Paper

Characterization of an Integral Thermal Protection and Cryogenic Insulation Material for Advanced Space Transportation Vehicles

2000-07-10
2000-01-2236
NASA’s planned advanced space transportation vehicles will benefit from the use of integral/conformal cryogenic propellant tanks which will reduce the launch weight and lower the earth-to-orbit costs considerably. To implement the novel concept of integral/conformal tanks requires developing an equally novel concept in thermal protection materials. Providing insulation against reentry heating and preserving propellant mass can no longer be considered separate problems to be handled by separate materials. A new family of materials, Superthermal Insulation (STI), has been conceived and investigated by NASA’s Ames Research Center to simultaneously provide both thermal protection and cryogenic insulation in a single, integral material. The present paper presents the results of a series of proof-of-concept tests intended to characterize the thermal performance of STI over a range of operational conditions representative of those which will be encountered in use.
Technical Paper

Wissler Simulations of a Liquid Cooled and Ventilation Garment (LCVG) for Extravehicular Activity (EVA)

2006-07-17
2006-01-2238
In order to provide effective cooling for astronauts during extravehicular activities (EVAs), a liquid cooling and ventilation garment (LCVG) is used to remove heat by a series of tubes through which cooling water is circulated. To better predict the effectiveness of the LCVG and determine possible modifications to improve performance, computer simulations dealing with the interaction of the cooling garment with the human body have been run using the Wissler Human Thermal Model. Simulations have been conducted to predict the heat removal rate for various liquid cooled garment configurations. The current LCVG uses 48 cooling tubes woven into a fabric with cooling water flowing through the tubes. The purpose of the current project is to decrease the overall weight of the LCVG system. In order to achieve this weight reduction, advances in the garment heat removal rates need to be obtained.
Technical Paper

Chemical Characterization of U.S. Lab Condensate

2006-07-17
2006-01-2016
Approximately 50% of the water consumed by International Space Station crewmembers is water recovered from cabin humidity condensate. Condensing heat exchangers in the Russian Service Module (SM) and the United States On-Orbit Segment (USOS) are used to control cabin humidity levels. In the SM, humidity condensate flows directly from the heat exchanger to a water recovery system. In the USOS, a metal bellows tank located in the US Laboratory Module (LAB) collects and stores condensate, which is periodically off-loaded in about 20-liter batches to Contingency Water Containers (CWCs). The CWCs can then be transferred to the SM and connected to a Condensate Feed Unit that pumps the condensate from the CWCs into the water recovery system for processing. Samples of the condensate in the tank are collected during the off-loads and returned to Earth for analyses.
Technical Paper

Development of Water Treatment Systems for Use on NASA Crew Exploration Vehicle (CEV) and Lunar Surface Access Module (LSAM)

2006-07-17
2006-01-2012
NASA is currently developing two new human rated launch systems. They are the Crew Exploration Vehicle (CEV) and the Lunar Surface Access Module (LSAM). Both of these spacecraft will require new life support systems to support the crew. These life support systems can also be designed to reduce the mass required to keep humans alive in space. Water accounts for about 80% of the mass required to keep a person alive. As a result recycling water offers a high return on investment. Recycling water can also increase mission safety by providing an emergency supply of drinking water. This paper evaluates the potential benefits of two wastewater treatment technologies that have been designed to reduce the mass of the CEV and LSAM missions. For a 3 day CEV mission to the International Space Station (ISS) this approach could reduce the mass required to provide drinking water by 65% when compared to stored water. For an 18 day Lunar mission a mass savings of 70% is possible.
Technical Paper

Advanced Space Suit Portable Life Support Subsystem Packaging Design

2006-07-17
2006-01-2202
This paper discusses the Portable Life Support Subsystem (PLSS) packaging design work done by the NASA and Hamilton Sundstrand in support of the 3 future space missions; Lunar, Mars and zero-g. The goal is to seek ways to reduce the weight of PLSS packaging, and at the same time, develop a packaging scheme that would make PLSS technology changes less costly than the current packaging methods. This study builds on the results of NASA's in-house 1998 study, which resulted in the “Flex PLSS” concept. For this study the present EMU schematic (low earth orbit) was used so that the work team could concentrate on the packaging. The Flex PLSS packaging is required to: protect, connect, and hold the PLSS and its components together internally and externally while providing access to PLSS components internally for maintenance and for technology change without extensive redesign impact. The goal of this study was two fold: 1.
Technical Paper

Development of a Contaminant Insensitive Sublimator

2006-07-17
2006-01-2217
Sublimators have been used for heat rejection for a variety of space applications including the Apollo Lunar Module and the Extravehicular Mobility Unit (EMU). Sublimators are excellent candidates for heat rejection devices on future vehicles like the Crew Exploration Vehicle (CEV), the Lunar Surface Access Module (LSAM), and future spacesuits. One of the drawbacks of previous designs was sensitivity to contamination in the feedwater. Undissolved contaminants can be removed with filters, but dissolved contaminants would be left in the pores of the porous plates in which the feedwater freezes and sublimates. These contaminants build up and clog the relatively small pores (~3–6 μm), thereby blocking the flow of the feedwater, reducing the available area for freezing and sublimation, and degrading the performance of the sublimator. For the X-38 program, a new sublimator design was developed by NASA-JSC that is less sensitive to contaminants.
Technical Paper

Air and Water Recycling System Development for a Long Duration Lunar Base

2006-07-17
2006-01-2191
Stored air and water will be sufficient for Crew Exploration Vehicle visits to the International Space Station and for brief missions to the moon, but an air and water recycling system will be needed to reduce cost for a long duration lunar base and for exploration of Mars. The air and water recycling system developed for the International Space Station is substantially adequate but it has not yet been used in operations and it was not designed for the much higher launch costs and reliability requirements of moon and Mars missions. Significant time and development effort, including long duration testing, is needed to provide a flawless air and water recycling system for a long duration lunar base. It would be beneficial to demonstrate air and water recycling as early as the initial lunar surface missions.
Technical Paper

Navigation in a Challenging Martian Environment Using Data Mining Techniques

2005-10-03
2005-01-3383
This paper discussed how data mining techniques could give advantage to the robot in navigation, in terms of speed. The input of our navigation system is the sensory information collected by the robot's equipped landmark sensor and infra-red sensor, the process of the system is the proposed data mining technique, and the output of the system is the execution of the moving direction in a 2D Martian environment. The results demonstrate efficient goal-oriented navigation using data mining techniques.
X