Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Development and Fabrication of a Breadboard Electrochemical Water Recovery System

1993-07-01
932032
A breadboard Electrochemical Water Recovery System (EWRS) that is designed to produce potable water from a composite waste stream without the use of expendables is described in this paper. Umpqua Research Company working together with NASA/JSC developed a sequential three-step process to accomplish this task. Electrolysis removes approximately 60% of the organic contaminants from ersatz composite waste water containing a total organic carbon (TOC) concentration of 707 mg/L. The contaminants in this solution consist of organic and inorganic impurities common to laundry, shower, handwash, and urine waste water. Useful gases and organic acids are the chief by-products of the first step. The partially oxidized electrolysis solution is then transferred to the electrodialysis process where ionized organic and inorganic species are concentrated into a brine. The deionized solution of recovered water contains ∼6% of the original organic contaminants and >90% of the original water.
Technical Paper

Advanced Development of the Regenerative Microbial Check Valve

1993-07-01
932175
The Microbial Check Valve (MCV) is a reloadable flow-through canister containing iodinated ion exchange resin, which is used aboard the Shuttle Orbiter as a disinfectant to maintain water potability. The MCV exhibits a significant contact kill and imparts a biocidal residual I2 concentration to the effluent. MCVs in current use have nominal 30 day lives. MCVs baselined for Space Station Freedom will have 90 day lives, and will require replacement 120 times over 30 years. Means to extend MCV life are desirable to minimize resupply penalties. New technology has been developed for fully autonomous in situ regeneration of an expended MCV canister. The Regenerative Microbial Check Valve (RMCV) consists of an MCV, a packed bed of crystalline I2, a flow diverter valve, an in-line iodine monitor and a microcontroller. During regeneration, flow is directed first through the packed I2 bed and then into the MCV where the resin is replenished.
Technical Paper

Regenerable Microbial Check Valve: Life Cycle Tests Results

1992-07-01
921316
The Microbial Check Valve (MCV) is a canister containing an iodinated ion exchange resin and is used on the Shuttle Orbiter to provide microbial control of potable water. The MCV provides a significant contact kill, and imparts a biocidal iodine residual to the water. The Orbiter MCV has a design life of 30 days. For longer duration applications, such as Space Station Freedom, an extended life is desirable to avoid resupply penalties. A method of in situ MCV regeneration with elemental iodine is being developed. During regeneration water en route to the MCV first passes through a crystalline iodine bed where a concentration between 200 - 300 mg/L I2 is attained. When introduced into the MCV, this high concentration causes an equilibrium shift towards iodine loading, effecting regeneration of the resin. After regeneration normal flow is re-established. Life cycle regeneration testing is currently in progress.
Technical Paper

Development and Testing of the Microwave Sterilizable Access Port Prototype

1996-07-01
961567
The ability to aseptically remove samples and products, and the capability for addition of materials to sterile or otherwise microbially susceptible systems have always been compromised by the lack of a reliable means of sterilizing the mating fixtures. Cultures of mammalian cells are particularly vulnerable to microbial contamination due to the complexity of nutrient media and the lengthy periods required for cell growth. The Microwave Sterilizable Access Port has been developed to overcome this limitation. The system consists of three primary components: a microwave power source, a combined sterilization chamber/in-line valve port assembly, and a specimen transfer interface. Microwave energy is transmitted via coaxial cable to a small pressurized chamber that serves as a sterile transition between the surrounding environment and the system during transfer of materials.
X