Refine Your Search

Topic

Author

Search Results

Journal Article

The Impact of Biodiesel on Particle Number, Size and Mass Emissions from a Euro4 Diesel Vehicle

2010-04-12
2010-01-0796
New European emissions legislation (Euro5) specifies a limit for Particle Number (PN) emissions and therefore drives measurement of PN during vehicle development and homologation. Concurrently, the use of biofuel is increasing in the marketplace, and Euro5 specifies that reference fuel must contain a bio-derived portion. Work was carried out to test the effect of fuels containing different levels of Fatty Acid Methyl Ester (FAME) on particle number, size, mass and composition. Measurements were conducted with a Cambustion Differential Mobility Spectrometer (DMS) to time-resolve sub-micron particles (5-1000nm), and a Horiba Solid Particle Counting System (SPCS) providing PN data from a Euro5-compliant measurement system. To ensure the findings are relevant to the modern automotive business, testing was carried out on a Euro4 compliant passenger car fitted with a high-pressure common-rail diesel engine and using standard homologation procedures.
Journal Article

Development of the Combustion System for a Flexible Fuel Turbocharged Direct Injection Engine

2010-04-12
2010-01-0585
Gasoline turbocharged direct injection (GTDI) engines, such as EcoBoost™ from Ford, are becoming established as a high value technology solution to improve passenger car and light truck fuel economy. Due to their high specific performance and excellent low-speed torque, improved fuel economy can be realized due to downsizing and downspeeding without sacrificing performance and driveability while meeting the most stringent future emissions standards with an inexpensive three-way catalyst. A logical and synergistic extension of the EcoBoost™ strategy is the use of E85 (approximately 85% ethanol and 15% gasoline) for knock mitigation. Direct injection of E85 is very effective in suppressing knock due to ethanol's high heat of vaporization - which increases the charge cooling benefit of direct injection - and inherently high octane rating. As a result, higher boost levels can be achieved while maintaining optimal combustion phasing giving high thermal efficiency.
Journal Article

Determination of the R Factor for Fuel Economy Calculations Using Ethanol-Blended Fuels over Two Test Cycles

2014-04-01
2014-01-1572
During the 1980s, the U.S. Environmental Protection Agency (EPA) incorporated the R factor into fuel economy calculations in order to address concerns about the impacts of test fuel property variations on corporate average fuel economy (CAFE) compliance, which is determined using the Federal Test Procedure (FTP) and Highway Fuel Economy Test (HFET) cycles. The R factor is defined as the ratio of the percent change in fuel economy to the percent change in volumetric heating value for tests conducted using two differing fuels. At the time the R-factor was devised, tests using representative vehicles initially indicated that an appropriate value for the R factor was 0.6. Reassessing the R factor has recently come under renewed interest after EPA's March 2013 proposal to adjust the properties of certification gasoline to contain significant amounts of ethanol.
Journal Article

In-Cylinder Particulate Matter and Spray Imaging of Ethanol/Gasoline Blends in a Direct Injection Spark Ignition Engine

2013-04-08
2013-01-0259
A single-cylinder Direct Injection Spark Ignition (DISI) engine with optical access was used to investigate the effects of ethanol/gasoline blends on in-cylinder formation of particulate matter (PM) and fuel spray characteristics. Indolene was used as a baseline fuel and two blends of 50% and 85% ethanol (by volume, balance indolene) were investigated. Time resolved thermal radiation (incandescence/natural luminosity) of soot particles and fuel spray characteristics were recorded using a high speed camera. The images were analyzed to quantify soot formation in units of relative image intensity as a function of important engine operating conditions, including ethanol concentration in the fuel, fuel injection timing (250, 300 and 320° bTDC), and coolant temperature (25°C and 90°C). Spatially-integrated incandescence was used as a metric to quantify the level of in-cylinder PM formed at the different operating conditions.
Journal Article

Effects of Fuel Octane Rating and Ethanol Content on Knock, Fuel Economy, and CO2 for a Turbocharged DI Engine

2014-04-01
2014-01-1228
Engine dynamometer testing was performed comparing fuels having different octane ratings and ethanol content in a Ford 3.5L direct injection turbocharged (EcoBoost) engine at three compression ratios (CRs). The fuels included midlevel ethanol “splash blend” and “octane-matched blend” fuels, E10-98RON (U.S. premium), and E85-108RON. For the splash blends, denatured ethanol was added to E10-91RON, which resulted in E20-96RON and E30-101 RON. For the octane-matched blends, gasoline blendstocks were formulated to maintain constant RON and MON for E10, E20, and E30. The match blend E20-91RON and E30-91RON showed no knock benefit compared to the baseline E10-91RON fuel. However, the splash blend E20-96RON and E10-98RON enabled 11.9:1 CR with similar knock performance to E10-91RON at 10:1 CR. The splash blend E30-101RON enabled 13:1 CR with better knock performance than E10-91RON at 10:1 CR. As expected, E85-108RON exhibited dramatically better knock performance than E30-101RON.
Journal Article

Analysis of the Effect of Bio-Fuels on the Combustion in a Downsized DI SI Engine

2011-08-30
2011-01-1991
In this study the fuel influence of several bio-fuel candidates on homogeneous engine combustion systems with direct injection is investigated. The results reveal Ethanol and 2-Butanol as the two most knock-resistant fuels. Hence these two fuels enable the highest efficiency improvements versus RON95 fuel ranging from 3.6% - 12.7% for Ethanol as a result of a compression ratio increase of 5 units. Tetrahydro-2-methylfuran has a worse knock resistance and a decreased thermal efficiency due to the required reduction in compression ratio by 1.5 units. The enleanment capability is similar among all fuels thus they pose no improvements for homogeneous lean burn combustion systems despite a significant reduction in NOX emissions for the alcohol fuels as a consequence of lower combustion temperatures.
Journal Article

Effect of Ethanol on Part Load Thermal Efficiency and CO2 Emissions of SI Engines

2013-04-08
2013-01-1634
This paper presents engine dynamometer testing and modeling analysis of ethanol compared to gasoline at part load conditions where the engine was not knock-limited with either fuel. The purpose of this work was to confirm the efficiency improvement for ethanol reported in published papers, and to quantify the components of the improvement. Testing comparing E85 to E0 gasoline was conducted in an alternating back-to-back manner with multiple data points for each fuel to establish high confidence in the measured results. Approximately 4% relative improvement in brake thermal efficiency (BTE) was measured at three speed-load points. Effects on BTE due to pumping work and emissions were quantified based on the measured engine data, and accounted for only a small portion of the difference.
Technical Paper

Ford 6.8L Hydrogen IC Engine for the E-450 Shuttle Van

2007-10-29
2007-01-4096
Ford Motor Company is researching and developing multiple propulsion strategies which include advanced gasoline engines, clean diesel, flexible fuel (ethanol blends up to E-85), hybrids and hydrogen propulsion, both in internal combustion (IC) engines and fuel cells. Hydrogen utilized as a transportation fuel is viewed as a long term solution as it is sustainable and clean when derived from renewable resources. The development and use of hydrogen IC engine (H2ICE) technology can readily be utilized to drive the transition strategy from the petroleum economy to the hydrogen economy. Because the “more conventional” H2ICE systems can be brought to market more quickly and in higher volume, business initiatives for hydrogen fueling infrastructure and other hydrogen complimentary required technologies can be realized sooner. To that end Ford has fully re-engineered a 6.8L Triton V-10 engine to run on hydrogen and power an E-450 shuttle van.
Technical Paper

Speciation of Evaporative Emissions from Plastic Fuel Tanks

1998-05-04
981376
Until now no results have been available regarding the composition of evaporative emissions in a SHED test. In particular, for alcohol containing fuels, it is important to assess the relative percentage of alcohols and hydrocarbons in view of their different environmental impacts. This paper presents the results of a study conducted to determine the composition of the emissions from a number of multilayer coextruded plastic fuel tanks soaked in IE10 and CM15 test fuels. These emissions were analyzed for composition using a gas chromatography analytical method which employs a vapor trap and desorb sampling technique. In the case of CM15, methanol was found to account for as much as 50% of the overall evaporative emissions. This speciation method also allows estimation of how leakage and permeation contribute separately to the overall emissions.
Technical Paper

Economic, Environmental and Energy Life-Cycle Assessment of Coal Conversion to Automotive Fuels in China

1998-11-30
982207
A life-cycle assessment (LCA) has been developed to help compare the economic, environmental and energy (EEE) impacts of converting coal to automotive fuels in China. This model was used to evaluate the total economic cost to the customer, the effect on the local and global environments, and the energy efficiencies for each fuel option. It provides a total accounting for each step in the life cycle process including the mining and transportation of coal, the conversion of coal to fuel, fuel distribution, all materials and manufacturing processes used to produce a vehicle, and vehicle operation over the life of the vehicle. The seven fuel scenarios evaluated in this study include methanol from coal, byproduct methanol from coal, methanol from methane, methanol from coke oven gas, gasoline from coal, electricity from coal, and petroleum to gasoline and diesel. The LCA results for all fuels were compared to gasoline as a baseline case.
Technical Paper

Fuel Property Effects on Emissions and Performance of a Light-Duty Diesel Engine

2009-04-20
2009-01-0488
Increased demand for highly fuel efficient propulsion systems drives the engine development community to develop advanced technologies allowing improving the overall thermal efficiency while maintaining low emission levels. In addition to improving the thermal efficiencies of the internal combustion engine itself the developments of fuels that allow improved combustion as well as lower the emissions footprint has intensified recently. This paper will describe the effects of five different fuel types with significantly differing fuel properties on a state-of-the-art light-duty HSDI diesel engine. The fuels cetane number ranges between 26 and 76. These fuels feature significantly differing boiling characteristics as well as heating values. The fuel selection also contains one pure biodiesel (SME - Soy Methyl Ester). This study was conducted in part load and full load operating points using a state of the art HSDI diesel engine.
Technical Paper

Advanced Combustion for Low Emissions and High Efficiency Part 2: Impact of Fuel Properties on HCCI Combustion

2008-10-06
2008-01-2404
A broad range of diesel, kerosene, and gasoline-like fuels has been tested in a single-cylinder diesel engine optimized for advanced combustion performance. These fuels were selected in order to better understand the effects of ignition quality, volatility, and molecular composition on engine-out emissions, performance, and noise levels. Low-level biofuel blends, both biodiesel (FAME) and ethanol, were included in the fuel set in order to test for short-term advantages or disadvantages. The diesel engine optimized in Part 1 of this study included cumulative engine hardware enhancements that are likely to be used to meet Euro 6 emissions limits and beyond, in part by operating under conditions of Homogeneous Charge Compression Ignition (HCCI), at least over some portions of the speed and load map.
Technical Paper

The Impact of Different Biofuel Components in Diesel Blends on Engine Efficiency and Emission Performance

2010-10-25
2010-01-2119
Within the Cluster of Excellence “Tailor-Made Fuels from Biomass” at RWTH Aachen University, the Institute for Combustion Engines carried out an investigation program to explore the potential of future biofuel components in Diesel blends. In this paper, thermodynamic single cylinder engine results of today's and future biofuel components are presented with respect to their engine-out emissions and engine efficiency. The investigations were divided into two phases: In the first phase, investigations were performed with rapeseed oil methyl ester (B100) and an Ethanol-Gasoline blend (E85). In order to analyze the impact of different fuel blends, mixtures with 10 vol-% of B100 or E85 and 90 vol-% of standardized EN590 Diesel were investigated. Due to the low cetane number of E85, it cannot be used purely in a Diesel engine.
Technical Paper

Products and Intermediates in Plasma-Catalyst Treatment of Simulated Diesel Exhaust

2001-09-24
2001-01-3512
A simulated diesel exhaust is treated with a nonthermal plasma discharge under steady state conditions. The plasma effluent is then passed through a sodium zeolite-Y (NaY) catalyst followed by a platinum oxidation catalyst. Detailed FTIR measurements of gas composition are taken before, between, and after the treatment stages. The plasma discharge causes oxidation of NO primarily to NO2, with methyl nitrate and nitric acid byproducts. At the same time, HC is partially oxidized, creating species such as formaldehyde, acetaldehyde, CO and other partial oxidation products. When this mixture passes over the NaY catalyst, part of the NOx is reduced to N2, with the remainder primarily in the form of NO. Methyl nitrate decomposes to form methanol and NOx, and nitric acid is consumed. There is little HC conversion on this catalyst. Small quantities of HCN and N2O are formed. When the mixture then passes over the platinum catalyst, further NOx conversion occurs.
Technical Paper

Dimethoxy Methane in Diesel Fuel: Part 1. The Effect of Fuels and Engine Operating Modes on Emissions of Toxic Air Pollutants and Gas/Solid Phase PAH

2001-09-24
2001-01-3627
The objective of this study was to quantify engine-out emissions of potentially toxic compounds from a modern diesel engine operated with different fuels including 15% v/v dimethoxy methane in a low sulfur diesel fuel. Five diesel fuels were examined: a low-sulfur, low-aromatic hydrocracked (∼1 ppm) fuel, the same low sulfur fuel containing 15% v/v dimethoxy methane, a Fischer-Tropsch fuel, a CARB fuel, and an EPA number 2 certification fuel. A DaimlerChrysler OM611 CIDI engine was controlled with a SwRI Rapid Prototyping Electronic Control system. The engine was operated over 4 speed-load modes. Each operating mode and fuel combination was run in triplicate. Thirty three potentially toxic compounds were measured for each fuel and mode.
Technical Paper

Dimethoxy Methane in Diesel Fuel: Part 3. The Effect of Pilot Injection, Fuels and Engine Operating Modes on Emissions of Toxic Air Pollutants and Gas/Solid Phase PAH

2001-09-24
2001-01-3630
The objective of this study was to quantify the effect of pilot fuel injection on engine-out emissions of potentially toxic compounds from a modern diesel engine operated with different fuels including 15% v/v dimethoxy methane in a low-sulfur diesel fuel. Five diesel fuels were examined: a low-sulfur (∼1 ppm), low aromatic, hydrocracked fuel, the same low-sulfur fuel containing 15% v/v dimethoxy methane, a Fischer-Tropsch fuel, a California reformulated fuel, and a EPA number 2 certification fuel. A DaimlerChrysler OM611 CIDI engine was controlled with a SwRI Rapid Prototyping Electronic Control system. The pilot fuel injection was either turned off or turned on with engine control by either Location of Peak Pressure (LPP) of combustion or the original equipment manufacturer (OEM) calibration strategy. These three control strategies were compared over 2 speed-load modes run in triplicate. Thirty-three potentially toxic compounds were measured.
Technical Paper

Dimethoxy Methane in Diesel Fuel: Part 2. The Effect of Fuels on Emissions of Toxic Air Pollutants and Gas/Solid Phase PAH Using a Composite Of Engine Operating Modes

2001-09-24
2001-01-3628
A weighted composite of four engine-operating modes, representative of typical operating modes found in the US FTP driving schedule, were used to compare engine-out emissions of toxic compounds using five diesel fuels. The fuels examined were: a low-sulfur low-aromatic hydrocracked diesel fuel, the same low-sulfur fuel containing 15% v/v dimethoxy methane, a Fischer-Tropsch fuel, a CARB fuel, and a EPA number 2 diesel certification fuel. A DaimlerChrysler OM611 CIDI engine was operated over 4 speed-load modes: mode 5, 2600 RPM, 8.8 BMEP; mode 6, 2300 RPM, 4.2 BMEP; mode 10, 2000 RPM, 2.0 BMEP; mode 11, 1500 RPM, 2.6 BMEP. The four engine operating modes were weighted as follows: mode 5, 25/1200; mode 6, 200/1200; mode 10, 375/1200; and mode 11, 600/1200. Each operating mode and fuel combination was run in triplicate.
Technical Paper

Dilution Effects on the Controlled Auto-Ignition (CAI) Combustion of Hydrocarbon and Alcohol Fuels

2001-09-24
2001-01-3606
This paper presents results from an experimental programme researching the in-cylinder conditions necessary to obtain homogenous CAI (or HCCI) combustion in a 4-stroke engine. The fuels under investigation include three blends of Unleaded Gasoline, a 95 RON Primary Reference Fuel, Methanol, and Ethanol. This work concentrates on establishing the CAI operating range with regard to Air/Fuel ratio and Exhaust Gas Re-circulation and their effect on the ignition timing, combustion rate and variability, Indicated thermal efficiency, and engine-out emissions such as NOx. Detailed maps are presented, defining how each of the measured variables changes over the entire CAI region. Results indicate that the alcohols have significantly higher tolerance to dilution than the hydrocarbon fuels tested. Also, variations in Gasoline blend have little effect on any of the combustion parameters measured.
Technical Paper

Near Infrared Absorption Sensor for In-Vehicle Determination of Automotive Fuel Composition

1992-02-01
920698
The use of methanol as an automotive fuel can be expected to become significant in North America during the 1990's. Methanol fuel will be sold as 85%/15% MeOH/gasoline mixture. Limited availability of methanol fuel in some parts of North America will require methanol vehicles to be dynamically adaptable to fuel compositions ranging from 85% methanol to 100% gasoline. One approach to meeting such a requirement is a sensor that is mounted somewhere in the vehicle's fuel handling system that determines the concentration of methanol in the fuel flowing to the engine. The output of the sensor is supplied to the computer controlled engine management system that sets engine operating parameters. A sensor based on near infrared absorbance is the subject of this paper.
Technical Paper

Two Alternative, Dielectric-Effect, Flexible-Fuel Sensors

1992-02-01
920699
This paper describes two types of dielectric-effect sensors that may be used as alternatives to a dielectric-effect sensor using a single capacitor. In the first type, three capacitors are mounted in a compact module inserted into a vehicle fuel line. The three capacitors are connected together to form an electrical pi-filter network. This approach provides a large variation of output signal as the fuel changes from gasoline to methanol. The sensor can be designed to operate in the 1 to 20 MHz frequency range. The second type of sensor investigated uses a resonant-cavity structure. Ordinarily, sensors based on resonant cavities are useful only if the operating frequency is several hundred MHz or higher. The high relative dielectric constant of methanol allows useful sensors to be built using relatively short lengths of metal tubing for the cavities. For example, a sensor built using a fuel rail only 38.7 cm long operated in a frequency range from 31 to 52 MHz.
X