Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Influence of the Mixture Formation on the Lubrication Oil Emission of Combustion Engines

2010-04-12
2010-01-1275
Partly competing objectives, as low fuel consumption, low friction, long oil maintenance rate, and at the same time lowest exhaust emissions have to be fulfilled. Diminishing resources, continuously reduced development periods, and shortened product cycles yield detailed knowledge about oil consumption mechanisms in combustion engines to be essential. There are different ways for the lubricating oil to enter the combustion chamber: for example as blow-by gas, leakage past valve stem seals, piston rings (reverse blow-by) and evaporation from the cylinder liner wall and the combustion chamber. For a further reduction of oil consumption the investigation of these mechanisms has become more and more important. In this paper the influence of the mixture formation and the resulting fuel content in the cylinder liner wall film on the lubricant oil emission was examined.
Journal Article

Mixture-Formation Analysis by PLIF in an HSDI Diesel Engine Using C8-Oxygenates as the Fuel

2015-04-14
2015-01-0960
With increasing interest in new biofuel candidates, 1-octanol and di-n-butylether (DNBE) were presented in recent studies. Although these molecular species are isomers, their properties are substantially different. In contrast to DNBE, 1-octanol is almost a gasoline-type fuel in terms of its auto-ignition quality. Thus, there are problems associated with engine start-up for neat 1-octanol. In order to find a suitable glow-plug position, mixture formation is studied in the cylinder under almost idle operating conditions in the present work. This is conducted by planar laser-induced fluorescence in a high-speed direct-injection optical diesel engine. The investigated C8-oxygenates are also significantly different in terms of their evaporation characteristics. Thus, in-cylinder mixture formation of these two species is compared in this work, allowing conclusions on combustion behavior and exhaust emissions.
Technical Paper

Applying Representative Interactive Flamelets (RIF) with Special Emphasis on Pollutant Formation to Simulate a DI Diesel Engine with Roof-Shaped Combustion Chamber and Tumble Charge Motion

2007-04-16
2007-01-0167
Combustion and pollutant formation in a new recently introduced Common-Rail DI Diesel engine concept with roof-shaped combustion chamber and tumble charge motion are numerically investigated using the Representative Interactive Flamelet concept (RIF). A reference case with a cup shaped piston bowl for full load operating conditions is considered in detail. In addition to the reference case, three more cases are investigated with a variation of start of injection (SOI). A surrogate fuel consisting of n-decane (70% liquid volume fraction) and α-methylnaphthalene (30% liquid volume fraction) is used in the simulation. The underlying complete reaction mechanism comprises 506 elementary reactions and 118 chemical species. Special emphasis is put on pollutant formation, in particular on the formation of NOx, where a new technique based on a three-dimensional transport equation within the flamelet framework is applied.
Technical Paper

Investigation of Spray-Bowl Interaction Using Two-Part Analysis in a Direct-Injection Diesel Engine

2010-04-12
2010-01-0182
The purpose of this study is to investigate the effect of spray-bowl interaction on combustion, and pollutants formation at one specific high-load point of a single-cylinder small-bore diesel engine through computational analysis. The simulations are performed using Representative Interactive Flamelet (RIF) model with detailed chemical kinetics. Detailed chemistry-based soot model is used for the prediction of soot emissions. The simulations are performed for five different injection timings. Model-predicted cylinder pressure and exhaust emissions are validated against the measured data for all the injection timings. A new method - Two-part analysis - is then applied to investigate the spray-bowl interaction. Two-part analysis splits the volume of the combustion chamber into two, namely the piston bowl and the squish volume. Through analysis, among others the histories of soot, carbon monoxide (CO) and nitric oxide (NO ) emissions inside both volumes are shown.
Technical Paper

Analytical and Empirical Methods for Optimization of Cylinder Liner Bore Distortion

2001-03-05
2001-01-0569
Beside the traditional prediction of stresses and verification by mechanical testing the optimization of cylinder liner bore distortion is one of today's most important topics in crankcase structure development. Low bore distortion opens up potentials for optimizing the piston group. As the piston rings achieve better sealing characteristics in a low deformation cylinder liner, oil consumption and blow-by are reduced. For unchanged oil consumption and blow-by demands, engine friction and subsequently, fuel consumption could be reduced by decreasing the pre-tension of the piston rings. From the acoustical point of view an optimization of piston-slap noise is often based on an optimized bore distortion behavior. Apart from basics to the behavior of liner bore distortion the paper presents advanced analytical and empirical methods for detailed prediction, verification and optimization of bore distortion taking into account the effective engine operation conditions.
Technical Paper

Architecture of a Detailed Three Dimensional Piston Ring Model

2011-09-11
2011-24-0159
Piston rings are faced with a broad range of demands like optimal sealing properties, wear properties and reliability. Even more challenging boundary conditions must be met when latest developments in the fields of direct injection as well as the application of bio fuels. This complex variety of piston ring design requirements leads to the need of a comprehensive simulation model in order to support the development in the early design phase prior to testing. The simulation model must be able to provide classical objectives like friction analysis, wear rate and blow-by. Furthermore, it must include an adequate oil consumption model. The objective of this work is to provide such a simulation model that is embedded in the commercial MBS software ‘FEV Virtual Engine’. The MBS model consists of a cranktrain assembly with a rigid piston that contains flexible piston rings.
Technical Paper

Opposed Piston Opposed Cylinder (opoc™) 450 hp Engine: Performance Development by CAE Simulations and Testing

2006-04-03
2006-01-0277
The new opoc™ diesel engine concept was presented at the SAE 2005 World Congress [1]. Exceptional power density of >1hp/lb and >40% efficiency have been predicted for the 2-stroke opoc™ diesel engine concept. Intensive CAE simulations have been performed during the concept and design phase in order to define the baseline scavenging and combustion parameters, such as port timing, turbocharger configuration and fuel injection nozzle design. Under a DARPA contract, first prototype engines have been built and have undergone a validation testing program. The main goal of the first testing phase was to demonstrate the power output capability of the new engine concept. In close relationship and interaction of testing and CAE simulation, the uniflow scavenging process and parameters of the special diesel direct side injection have been optimized. This paper discusses the latest results of the opoc engine development.
X