Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Journal Article

Dedicated GTL Vehicle: A Calibration Optimization Study

2010-04-12
2010-01-0737
GTL (Gas-To-Liquid) fuel is well known to improve tailpipe emissions when fuelling a conventional diesel vehicle, that is, one optimized to conventional fuel. This investigation assesses the additional potential for GTL fuel in a GTL-dedicated vehicle. This potential for GTL fuel was quantified in an EU 4 6-cylinder serial production engine. In the first stage, a comparison of engine performance was made of GTL fuel against conventional diesel, using identical engine calibrations. Next, adaptations enabled the full potential of GTL fuel within a dedicated calibration to be assessed. For this stage, two optimization goals were investigated: - Minimization of NOx emissions and - Minimization of fuel consumption. For each optimization the boundary condition was that emissions should be within the EU5 level. An additional constraint on the latter strategy required noise levels to remain within the baseline reference.
Journal Article

Coking Phenomena in Nozzle Orifices of Dl-Diesel Engines

2009-04-20
2009-01-0837
Within a public founded project test cell investigations were undertaken to identify parameters which predominantly influence the development of critical deposits in injection nozzles. A medium-duty diesel engine was operated in two different coking cycles with a zinc-free lubricant. One of the cycles is dominated by rated power, while the second includes a wide area of the operation range. During the experiments the temperatures at the nozzle tip, the geometries of the nozzle orifice and fuel properties were varied. For a detailed analysis of the deposits methods of electron microscopy were deployed. In the course of the project optical access to all areas in the nozzle was achieved. The experiments were evaluated by means of the monitoring of power output and fuel flow at rated power. The usage of a SEM (scanning electron microscope) and a TEM (transmission electron microscope) revealed images of the deposits with a magnification of up to 160 000.
Journal Article

Quantitative Fuel-Air-Mixing Measurements in Diesel-Like Sprays Emanating from Convergent and Divergent Multi-Layer Nozzles

2012-04-16
2012-01-0464
It is the objective of this work to characterize mixture formation in the sprays emanating from Multi-Layer (ML) nozzles under approximately engine-like conditions by quantitative, spatially, and temporally resolved fuel-air ratio and temperature measurements. ML nozzles are cluster nozzles which have more than one circle of orifices. They were introduced previously, in order to overcome the limitations of conventional nozzles. In particular, the ML design yields the potential of variable spray interaction, so that mixture formation could be controlled according to the operating condition. In general, it was also a primary aim of the cluster-nozzle concepts to combine the enhanced atomization and pre-mixing of small nozzle holes with the longer spray penetration lengths of large holes. The applied diagnostic, which is based on 1d spontaneous Raman scattering, yields the quantitative stoichiometric ratio and the temperature in the vapor phase.
Technical Paper

Mechanical Testing - Still Necessary!

2007-04-16
2007-01-1768
Over the last decades, the use of computers has become an integral part of the engine development process. Computer-based tools are increasingly used in the design process, and especially the layout of the various subsystems is conducted by means of simulation models. Computer-aided engineering plays a central role e.g. in the design of the combustion process as well as with regards to work performed in the area of engine mechanics, where CFD, FEM, and MBS are applied. As a parallel trend, it can be observed that various engine performance characteristics such as e.g. the specific power output and the power-to-weight ratio have undergone an enormous increase, a trend which to some extent counteracts the increase in safety against malfunction and failure. As yet, due to the constant need for further optimization, mechanical testing and verification processes have not become redundant, and it is assumed that they will remain indispensable for the foreseeable future.
Technical Paper

Potential of the Spray-guided Combustion System in Combination with Turbocharging

2008-04-14
2008-01-0139
Based on the TurboDISI engine presented earlier [1], [2], a new Spray Guided Turbo (SGT) concept with enhanced engine performance was developed. The turbocharged engine was modified towards utilizing a spray-guided combustion system with a central piezo injector location. Higher specific power and torque levels were achieved by applying specific design and cooling solutions. The engine was developed utilizing a state-of-the-art newly developed charge motion design (CMD) process in combination with single cylinder investigations. The engine control unit has a modular basis and is realized using rapid prototyping hardware. Additional fuel consumption potentials can be achieved with high load EGR, use of alternative fuels and a hybrid powertrain. The CO2 targets of the EU (120 g/km by 2012 in the NEDC) can be obtained with a mid-size vehicle applying the technologies presented within this paper.
Technical Paper

Advanced Combustion for Low Emissions and High Efficiency Part 2: Impact of Fuel Properties on HCCI Combustion

2008-10-06
2008-01-2404
A broad range of diesel, kerosene, and gasoline-like fuels has been tested in a single-cylinder diesel engine optimized for advanced combustion performance. These fuels were selected in order to better understand the effects of ignition quality, volatility, and molecular composition on engine-out emissions, performance, and noise levels. Low-level biofuel blends, both biodiesel (FAME) and ethanol, were included in the fuel set in order to test for short-term advantages or disadvantages. The diesel engine optimized in Part 1 of this study included cumulative engine hardware enhancements that are likely to be used to meet Euro 6 emissions limits and beyond, in part by operating under conditions of Homogeneous Charge Compression Ignition (HCCI), at least over some portions of the speed and load map.
Technical Paper

Advanced Combustion for Low Emissions and High Efficiency Part 1: Impact of Engine Hardware on HCCI Combustion

2008-10-06
2008-01-2405
Two single-cylinder diesel engines were optimised for advanced combustion performance by means of practical and cumulative hardware enhancements that are likely to be used to meet Euro 5 and 6 emissions limits and beyond. These enhancements included high fuel injection pressures, high EGR levels and charge cooling, increased swirl, and a fixed combustion phasing, providing low engine-out emissions of NOx and PM with engine efficiencies equivalent to today's diesel engines. These combustion conditions approach those of Homogeneous Charge Compression Ignition (HCCI), especially at the lower part-load operating points. Four fuels exhibiting a range of ignition quality, volatility, and aromatics contents were used to evaluate the performance of these hardware enhancements on engine-out emissions, performance, and noise levels.
Technical Paper

Specific Durability Testing with FEV Master Program

2010-04-12
2010-01-0922
During the past years, there has been an increasing tendency to seriously question and break up old and ingrained structures in combustion engine testing. The reason for this is the continuously increasing number of engine and vehicle variants and a variety of applications resulting from it, which significantly push up development costs and times when carrying out the classical testing patterns. The following article by FEV Motorentechnik GmbH introduces a comprehensive test methodology for purposeful endurance testing of modern drive units (in particular from the fields of passenger cars and commercial vehicles). The procedure and the testing philosophy are explained in detail, illustrated by a concrete development example.
Technical Paper

Prediction of Hydrodynamic Bearing Behaviour for Pre-layout of Cranktrain Dimensions

2010-10-25
2010-01-2186
Calculating the bearing reliability and behavior is one of the primary tasks which have to be performed to define the main dimensions of the cranktrain of an internal combustion engine. Since the bearing results are essential for the pre-layout of the cranktrain, the conclusion on the bearing safety should be met as early as possible. Therefore detailed simulations like T-EHD or EHD analysis may not be applied to define the dimensions in such an early development phase. In the frame of this study a prediction methodology, based on a HD bearing approach, for bearing reliability of inline-4 crankshafts of passenger cars is proposed. In this way not only the design phase is shortened but also achieving the optimal solution is simplified. Moreover the requirement of a CAD model is eliminated for the preliminary design phase. The influencing parameters on the bearing behavior are first selected and divided into two groups: geometry and loading.
Technical Paper

A New CFD Approach for Assessment of Swirl Flow Pattern in HSDI Diesel Engines

2010-09-28
2010-32-0037
The fulfillment of the aggravated demands on future small-size High-Speed Direct Injection (HSDI) Diesel engines requires next to the optimization of the injection system and the combustion chamber also the generation of an optimal in-cylinder swirl charge motion. To evaluate different port concepts for modern HSDI Diesel engines, usually quantities as the in-cylinder swirl ratio and the flow coefficient are determined, which are measured on a steady-state flow test bench. It has been shown that different valve lift strategies nominally lead to similar swirl levels. However, significant differences in combustion behavior and engine-out emissions give rise to the assumption that local differences in the in-cylinder flow structure caused by different valve lift strategies have noticeable impact. In this study an additional criterion, the homogeneity of the swirl flow, is introduced and a new approach for a quantitative assessment of swirl flow pattern is presented.
Technical Paper

The Impact of new Technologies and Tools on the Vehicle and Engine Development Process

2001-03-05
2001-01-0771
Technological progress opens the door for the development of new tools to be used for the development of vehicles and engines. This offers the opportunity for an optimization of the entire workflow on one hand, and an improvement of single tasks on the other hand. This paper describes the actual status of the development process, describes new directions of tool evolvement and finally gives an outlook into the future. Redline ADAPT-SIM is a tool for driver- and vehicle simulation, which was developed primarily for ECU application, but can also be used for other dynamic testing tasks. The introduction of this tool leads to better controllability and therefore also repeatability of tests.
Technical Paper

A New Transient Elastohydrodynamic (EHD) Bearing Model Linkable to ADAMS®

2001-03-05
2001-01-1075
The new elastohydrodynamic (EHD) code developed by FEV Motorentechnik GmbH, Aachen, is designed to improve the predictability of journal bearing designs and thereby increase the reliability of safety factors in the development of highly loaded internal combustion engines. Using this tool design targets can be achieved with higher confidence levels. The developed code may be linked to commercial multibody system (MBS) codes such as ADAMS® while simultaneously representing the important characteristics occurring in transiently loaded journal bearings including elastic deformation, cavitation, and non-constant speed. Static deviations from ideal journal and bearing shell shapes caused by manufacturing and assembly processes can be considered and are substantially important in the evaluation of journal bearings. Presented is an economic bearing model approach which includes elastic bearing deformations.
Technical Paper

A New TEHD Approach for Sophisticated Simulation of Journal Bearings

2001-10-01
2001-01-3367
The new Thermo-Elasto-Hydro-Dynamic (TEHD) code developed by FEV, is designed to improve the predictability of journal bearing designs and thereby increase the reliability of safety factors in the development of highly loaded internal combustion engines. Advanced analysis tools are evaluated by their performance as well as by their ease of use. High performance means on the one hand: taking into account all the important characteristics, like bearing elasticity or cavitation effects, to mention only some major parameters for modern journal bearing analysis. On the other hand: an economic run-time behavior must be a key feature concerning usability of the TEHD-demands for daily development praxis. Ease of use means also, that the TEHD model can easily be used as a plug-in routine of an already existing software package that is well known to the development departments.
Technical Paper

Development of Fuel Cell System Air Management Utilizing HIL Tools

2002-03-04
2002-01-0409
In this paper, boosting strategies are investigated for part load operation of typical fuel-cell-systems. The optimal strategy can mainly be obtained by simulation. The boosting strategy is one of the most essential parameters for design and operation of a fuel-cell-system. High pressure ratios enable high power densities, low size and weight. Simultaneously, the demands in humidification and water recovery for today's systems are reduced. But power consumption and design effort of the system increases strongly with the pressure level. Therefore, the main focus must be on the system efficiencies at part load. In addition, certain boundary conditions like the inlet temperature of the fuel-cell stack must be maintained. With high pressure levels the humidification of the intake air before, within or after the compressor is not sufficient to dissipate enough heat. Vaporization during the compression process shows efficiency advantages while the needs in heat dissipation decreases.
Technical Paper

Modeling of Exhaust Valve Opening in a Camless Engine

2002-03-04
2002-01-0376
Electromechanical valve trains in camless engines enable virtually fully variable valve timing that offers large potential for both part load fuel economy and high low end torque. Based upon the principle of a spring-mass-oscillator, the actuator stores the energy to open and close the valves in springs. However, the motion of the valves and the electromechanical actuation suffers from parasitic losses, such as friction and ohmic resistance. Besides eddy current losses, gas forces obviously play a further important role in the control of exhaust valve opening especially at high engine speeds and loads. Based on engine test bench data, computational simulations (3D CFD, gas exchange process and electromechanical system) are carried out to analyze the effects of exhaust valve gas forces on the dynamic motion of valve and actuator. The modeling approach and results of this investigation are discussed in this paper.
Technical Paper

Synergies of Variable Valve Actuation and Direct Injection

2002-03-04
2002-01-0706
The main goal in the development of new automobile SI engines is to significantly reduce fuel consumption. To this end both, variable valve actuation and direct gasoline injection, are being pursued as new engine concepts. Both approaches appear to offer approximately the same potential to reduce fuel consumption. The development so far is creating the impression of two competing technical concepts with no obvious way to combine them [1]. The two engine concepts, however, can be combined, although it is often objected that their combination would only yield marginal additional potential. That is true to the extent that the advantages of dethrottling offered by both of the concepts can only be counted once in terms of overall potential. But there is a number of additional effects to be taken into account. This Paper represents an analysis of the individual potential of the two approaches as well as an estimation of their combined potential.
Technical Paper

Turbocharging of Downsized Gasoline DI Engines with 2 and 3 Cylinders

2011-09-11
2011-24-0138
Turbocharged DISI engines with four cylinders have established in the market and provide a performance comparable to larger six-cylinder engines in the smaller compartment of a four-cylinder engine. In the Japanese market, also turbo gasoline engines with 500 - 660 cm₃ displacement have a long tradition in Kei-Cars. However, those engines show a lower specific performance as would be required for propelling typical small or compact vehicles in Europe. Recently, two-cylinder turbo engines have come to market, which are found attractive with respect to sound, package, and also enable low vehicle fuel consumption in NEDC test. The paper presents a turbocharger layout study on 2- and 3-cylinder engines. It discusses the influence of cylinder displacement volume on the sizing of turbines and compressors, and how specific flow phenomena in the turbine can be captured in the simulation model.
Technical Paper

Application of Vehicle Interior Noise Simulation (VINS) for NVH Analysis of a Passenger Car

2005-05-16
2005-01-2514
The overall perception of a vehicle's quality is significantly influenced by its interior noise characteristics. Therefore, it is important to strike a balance between “pleasant” and “dynamic” sound that fits the customer requirements with respect to vehicle brand and class [1]. Typically, a significant share of the interior vehicle noise is transferred through structure-borne paths. Hence, the powertrain mounting system plays an important role in designing the interior noise. This paper describes an application of the method of vehicle interior noise simulation (VINS) to achieve a characteristic interior sound. This approach is based on separate measurements (or calculations) of excitations and transfer functions and subsequent calculation of the interior noise in the time domain.
Technical Paper

Modern Gear Train Simulation Process for the Virtual Engine and Transmission Development

2006-04-03
2006-01-0585
Current simulation tools for the investigation of the dynamic system response as well as for the component stresses on the basis of multi-body and finite-element techniques are integral part of today's powertrain development efforts. These tools are typical used for the analysis and optimization of shafts, clutches, chain/belt drives, bearings, levers, brackets, housings and many other components. An exception is made by gears which today are still frequently investigated by the help of semi-empirical methods based on DIN, ISO, AGMA and the specific knowledge base of well experienced developers. The main difficulty is that the gears are rolling off via large contact surfaces with complex nonlinear mechanical contact properties. Within the scope of research work FEV developed a new method for the analysis and optimization of gear drives based on comercial multi-body and finite-element software platforms.
Technical Paper

Downsizing of Diesel Engines: 3-Cylinder / 4-Cylinder

2000-03-06
2000-01-0990
Due to the future application of combustion engines in small and hybrid vehicles, the demand for high efficiency with low mass and compact engine design is of prime importance. The diesel engine, with its outstanding thermal efficiency, is a well suited candidate for such applications. In order to realize these targets, future diesel engines will need to have increasingly higher specific output combined with increased power to weight ratios. This is therefore driving the need for new designs of 3 and/or 4 cylinder, small bore engines of low displacement, sub 1.5l. Recent work on combustion development, has shown that combustion systems, ports, valves and injector sizes are available for bore sizes down to 65 mm.
X