Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

A New Approach for Optimization of Mixture Formation on Gasoline DI Engines

2010-04-12
2010-01-0591
Advanced technologies such as direct injection DI, turbocharging and variable valve timing, have lead to a significant evolution of the gasoline engine with positive effects on driving pleasure, fuel consumption and emissions. Today's developments are primarily focused on the implementation of improved full load characteristics for driving performance and fuel consumption reduction with stoichiometric operation, following the downsizing approach in combination with turbocharging and high specific power. The requirements of a relatively small cylinder displacement with high specific power and a wide flexibility of DI injection specifications lead to competing development targets and additionally to a high number of degrees of freedom during optimization. In order to successfully approach an optimum solution, FEV has evolved an advanced development methodology, which is based on the combination of simulation, optical diagnostics and engine thermodynamics testing.
Technical Paper

HiL-based ECU-Calibration of SI Engine with Advanced Camshaft Variability

2006-04-03
2006-01-0613
A main focus of development in modern SI engine technology is variable valve timing, which implies a high potential of improvement regarding fuel consumption and emissions. Variable opening, period and lift of inlet and outlet valves enable numerous possibilities to alter gas exchange and combustion. However, this additional variability generates special demands on the calibration process of specific engine control devices, particularly under cold start and warm-up conditions. This paper presents procedures, based on Hardware-in-the-Loop (HiL) simulation, to support the classical calibration task efficiently. An existing approach is extended, such that a virtual combustion engine is available including additional valve timing variability. Engine models based purely on physical first principles are often not capable of real time execution. However, the definition of initial parameters for the ECU requires a model with both real time capability and sufficient accuracy.
Technical Paper

Low fuel consumption and low emissions~Electromechanical valve train in vehicle operation

2000-06-12
2000-05-0018
The electromechanical valve train (EMV) technology allows for a reduction in fuel consumption while operating under a stoichiometric air-fuel ratio and preserves the ability to use conventional exhaust gas aftertreatment technology with a 3-way catalyst. Compared with an engine with a camshaft-driven valve train, the variable valve timing concept makes possible an additional optimization of cold start, warm-up and transient operation. In contrast with the conventionally throttled engine, optimized control of load and in-cylinder gas movement can be used for each individual cylinder and engine cycle. A load control strategy using a "Late Intake Valve Open" (LIO) provides a reduction in start-up HC emissions of approximately 60%. Due to reduced wall-wetting, the LIO control strategy improves the transition from start to idle.
Technical Paper

Effect of Intake Port Design on the Flow Field Stability of a Gasoline DI Engine

2011-04-12
2011-01-1284
The application of technologies such as direct injection, turbo charging and variable valve timing has caused a significant evolution of the gasoline engine with positive effects on fuel consumption and emissions. The current developments are primarily focused on the realization of improved full load characteristics and fuel consumption reduction with stoichiometric operation, following the downsizing approach in combination with turbo charging and high specific power. The requirements of high specific power in a relatively small cylinder displacement and a wide range of DI injection specifications lead to competing development targets and to a high number of degrees of freedom during engine layout and optimization. One of the major targets is to assess the stability of the combustion system in the early development phase.
Technical Paper

Modeling of Exhaust Valve Opening in a Camless Engine

2002-03-04
2002-01-0376
Electromechanical valve trains in camless engines enable virtually fully variable valve timing that offers large potential for both part load fuel economy and high low end torque. Based upon the principle of a spring-mass-oscillator, the actuator stores the energy to open and close the valves in springs. However, the motion of the valves and the electromechanical actuation suffers from parasitic losses, such as friction and ohmic resistance. Besides eddy current losses, gas forces obviously play a further important role in the control of exhaust valve opening especially at high engine speeds and loads. Based on engine test bench data, computational simulations (3D CFD, gas exchange process and electromechanical system) are carried out to analyze the effects of exhaust valve gas forces on the dynamic motion of valve and actuator. The modeling approach and results of this investigation are discussed in this paper.
Technical Paper

Benefits of the Electromechanical Valve Train in Vehicle Operation

2000-03-06
2000-01-1223
One of the most promising methods to reduce fuel consumption is to use unthrottled engine operation, where load control occurs by means of variable valve timing with an electromechanical valve train (EMV) system. This method allows for a reduction in fuel consumption while operating under a stoichiometric air-fuel-ratio and preserves the ability to use conventional exhaust gas aftertreatment technology with a 3-way-catalyst. Compared with an engine with a camshaft-driven valve train, the variable valve timing concept makes possible an additional optimization of cold start, warm-up and transient operation. In contrast with the conventionally throttled engine, optimized control of load and in-cylinder gas movement is made possible from the start of the first cycle. A load control strategy using a “Late Intake Valve Open” (LIO) provides a reduction in start-up HC emissions of approximately 60%.
X