Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Design Status of the Closed-Loop Air Revitalization System ARES for Accommodation on the ISS

2009-07-12
2009-01-2506
The Closed-Loop Air REvitalisation System ARES is a regenerative life support system for closed habitats. With regenerative processes the ARES covers the life support functions: 1. Removal of carbon dioxide from the spacecraft atmosphere via a regenerative adsorption/desorption process, 2. Supply of breathable oxygen via electrolysis of water, 3. Catalytic conversion of carbon dioxide with hydrogen to water and methane. ARES will be accommodated in a double ISPR Rack which will contain all main and support functions like power and data handling and process water management. It is foreseen to be installed onboard the International Space Station (ISS) in the Columbus Module in 2013. After an initial technology demonstration phase ARES shall continue to operate thus enhancing the capabilities of the ISS Life Support System as acknowledged by NASA [5]. Due to its regenerative processes ARES will allow a significant reduction of water upload to the ISS.
Technical Paper

Design Status of the Closed-Loop Air Revitalization System ARES for Accommodation on the ISS

2007-07-09
2007-01-3252
During the last years extensive work has been done to design and develop the Closed-Loop Air Revitalization System ARES. The potential of ARES e.g. as part of the ISS ECLSS is to significantly reduce the water upload demand and to increase the safety of the crew by reducing dependence on re-supply flights. The design is adapted to the interfaces of the new base lined Russian MLM module as possible location for a future installation of ARES. Due to the lack of orbital support equipment and interfaces to a waste water bus, to a feed water supply line and due to the availability of only one single vent line it was necessary to make the ARES process water loop as independent as possible from the host vehicle. Another optimization effort was to match the CO2 desorption profile with the available hydrogen flow to achieve a sufficient water recovery performance, while meeting all related safety requirements, minimizing complexity and improving reliability.
Technical Paper

Cryo Component Test of Herschel EPLM

2003-07-07
2003-01-2463
The Herschel satellite is a space based telescope designed for the investigation of sub millimeter radiation from astronomical objects. The cryogenic system is an essential part of the telescope’s Extended Payload Module (EPLM). The cryogenic system has to provide an environment of sufficiently low temperatures to assure the proper functioning of the scientific payload. Main component of the cryogenic system is the cryostat, a huge vacuum vessel (see: Figure 1) with various cryogenic components inside. In order to qualify the components of the cryogenic system, multiple tests such as leak tests, thermal cycle tests, pressure cycle tests and vibration tests are performed. In this paper the test program for two cryo components, the rupture disc and a safety valve is discussed. The testing philosophy is presented and selected results of tests at ambient and low temperatures are shown.
Technical Paper

Air Revitalization, an Inevitable Prerequisite for Future Affordable Crewed Missions to Space

2001-07-09
2001-01-2291
The current ECLS baseline of the International Space Station ISS contains an open oxygen loop. Breathable oxygen, generated by electrolysis of water, is supplied to all habitable modules. The crew of max. 7 astronauts converts the oxygen into metabolic carbon dioxide, which needs to be removed from the ISS atmosphere. Adsorption of CO2 is achieved through molecular sieves, desorption of CO2 is conducted by evacuation into space. This open process needs approx. 1500 kg of water upload mass annually. More than 75 % of this upload mass can be saved, if the open oxygen loop will be closed. This paper outlines the closed loop air revitalization system of Astrium, ARES, which has been successfully tested in closed chamber tests. It demonstrates in detail the technical application of ARES on ISS and outlines the commercial benefits. The second part of the paper describes ARES for a Mars habitat with a closed oxygen and hydrogen loop.
Journal Article

Design Status of the Closed-Loop Air Revitalization System ARES for Accommodation on the ISS

2008-06-29
2008-01-2189
1 The Closed-Loop Air REvitalisation System ARES is a proof of technology Payload. The objective of ARES is to demonstrate with regenerative processes: the provision of the capability for carbon dioxide removal from the module atmosphere, the return supply of breathable oxygen within a closed-loop process, the conversion of the hydrogen, resulting from the oxygen generation via electrolysis, to water. The ARES Payload is foreseen to be installed - in 2012 - onboard the ISS in the Columbus Module. The operation of ARES - in a representative manned microgravity environment - will produce valuable operational data on a system which is based on technologies which are different from other air revitalization systems presently in use. The ARES Technology Demonstrator Payload development started in 2003 with a Phase B, see references [1], [2], [3] and [4]. ARES is presently in Phase C1 and a PDR is scheduled for the beginning of 2009.
X