Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Optimization of Chassis Vibrations at Single Irregularities

2005-05-16
2005-01-2466
At single irregularities, such as manhole covers and joints in concrete road surfaces, axle and engine vibrations are increased. Depending on the response characteristic of the vehicle chassis and seats and the duration of the event, such excitations can have a considerable influence on the comfort of vehicle occupants. With the objective of optimising the vibration characteristics of the axles of a vehicle, a procedure is presented which clarifies the motion sequences due to certain types of excitation on a roller test stand. This knowledge permits the optimisation of the axle kinematics, the axle bearings, and the spring-damper system.
Technical Paper

Time-Triggered Architecture Based on FlexRay: Roadmap from High-Speed Data Networking to Safety-Relevant Automotive Applications

2006-10-16
2006-21-0042
Future applications in the automotive domain such as distributed control functions need a highly dependable communication system. The current FlexRay standard already provides high transmission speeds and addresses deterministic data communication. This paper shows how to enhance the safety properties for handling a new set of applications and speeding up the communication even more. The concept of Layered FlexRay is based on the FlexRay protocol and addresses the requirements of safety-relevant applications in a distributed communication network. An implementation of this approach is depicted with a Safety Core hardware chip. It is designed to handle the communication between the FlexRay system beneath and the application on the host CPU above, providing highly efficient data management and execution of safety functions which otherwise would have to be executed in software on the host CPU.
Technical Paper

Collaborative Product Creation Driving the MOST Cooperation

2002-10-21
2002-21-0003
The following document offers insight into the work of the MOST Cooperation. Now that MOST is on the road, a short overview of five years of successful collaborative work of the partners involved and the results achieved will be given. Emphasis is put on the importance of a shared vision in combination with shared values as a prerequisite for targeted collaborative work. It is also about additional key success factors that led to the success of the MOST Cooperation. Your attention will be directed to the way the MOST Cooperation sets and achieves its goals. And you will learn about how the organization was set-up to support a fast progression towards the common goal. The document concludes with examples of recent work as well as an outlook on future work.
Technical Paper

Predicting Overall Seating Discomfort Based on Body Area Ratings

2007-04-16
2007-01-0346
For car manufacturers, seating comfort is becoming more and more important in distinguishing themselves from their competitors. There is a simultaneous demand for shorter development times and more comfortable seats. Comfort in automobile seats is a multi-dimensional and complex problem. Many current sophisticated measuring tools were consulted, but it is unclear on which factors one should concentrate attention when measuring comfort. The goal of this paper is to find a model in order to predict the overall seating discomfort based on body area ratings. Besides micro climate, the pressure distribution appears to be the most objective measure comprising with the clearest association with the subjective ratings. Therefore an analysis with three different test series was designed, allowing the variation of pressure on the seat surface. In parallel the subjects were asked to judge the local and the overall sensation.
Technical Paper

Ridemeter – Calculated Ride Comfort

2007-05-15
2007-01-2388
The ridemeter is a development tool that provides a predictive value for subjectively perceived ride quality on the basis of objective measured values. After years of preliminary investigations it was possible to make the link between the subjective driving experience and objective measured data. Intensive validation of the tool known as the ridemeter enables it to obtain meaningful results, which meet with a high degree of acceptance from the development engineer. The ridemeter is capable of providing calculated assessments for different vehicle concepts on different roads. The ridemeter is used on general road tests, on test runs on the AUDI proving ground, on our test rigs and in simulation. Areas of application include benchmark investigations, optimisation steps for suspension components and systems, and the setting out of limit values and tolerance curves in specifications for future vehicles.
Journal Article

Adapted Development Process for Security in Networked Automotive Systems

2014-04-01
2014-01-0334
Future automotive systems will be connected with other vehicles and information systems for improved road safety, mobility and comfort. This new connectivity establishes data and command channels between the internal automotive system and arbitrary external entities. One significant issue of this paradigm shift is that formerly closed automotive systems now become open systems that can be maliciously influenced through their communication interfaces. This introduces a new class of security challenges for automotive design. It also indirectly impacts the safety mechanisms that rely on a closed-world assumption for the vehicle. We present a new security analysis approach that helps to identify and prioritize security issues in automotive architectures. The methodology incorporates a new threat classification for data flows in connected vehicle systems.
Journal Article

Development of a Full-Vehicle Hybrid-Simulation Test using Hybrid System Response Convergence (HSRC)

2012-04-16
2012-01-0763
Hybrid vehicle simulation methods combine physical test articles (vehicles, suspensions, etc.) with complementary virtual vehicle components and virtual road and driver inputs to simulate the actual vehicle operating environment. Using appropriate components, hybrid simulation offers the possibility to develop more accurate physical tests earlier, and at lower cost, than possible with conventional test methods. MTS Systems has developed Hybrid System Response Convergence (HSRC), a hybrid simulation method that can utilize existing durability test systems and detailed non-real-time virtual component models to create an accurate full-vehicle simulation test without requiring road load data acquisition. MTS Systems and Audi AG have recently completed a joint evaluation project for the HSRC hybrid simulation method using an MTS 329 road simulator at the Audi facility in Ingolstadt, Germany.
X