Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

Development of an Improved Cosmetic Corrosion Test for Finished Aluminum Autobody Panels

2008-04-14
2008-01-1156
A task group within the SAE Automotive Corrosion and Protection (ACAP) Committee continues to pursue the goal of establishing a standard test method for in-laboratory cosmetic corrosion evaluations of finished aluminum auto body panels. The program is a cooperative effort with OEM, supplier, and consultant participation and is supported in part by USAMP (AMD 309) and the U.S. Department of Energy. Numerous laboratory corrosion test environments have been used to evaluate the performance of painted aluminum closure panels, but correlations between laboratory test results and in-service performance have not been established. The primary objective of this project is to identify an accelerated laboratory test method that correlates with in-service performance. In this paper the type, extent, and chemical nature of cosmetic corrosion observed in the on-vehicle exposures are compared with those from some of the commonly used laboratory tests
Technical Paper

Development of an Improved Cosmetic Corrosion Test for Finished Aluminum Autobody Panels

2007-04-16
2007-01-0417
Since 2000, an Aluminum Cosmetic Corrosion task group within the SAE Automotive Corrosion and Protection (ACAP) Committee has existed. The task group has pursued the goal of establishing a standard test method for in-laboratory cosmetic corrosion evaluations of finished aluminum auto body panels. A cooperative program uniting OEM, supplier, and consultants has been created and has been supported in part by USAMP (AMD 309) and the U.S. Department of Energy. Prior to this committee's formation, numerous laboratory corrosion test environments have been used to evaluate the performance of painted aluminum closure panels. However, correlations between these laboratory test results and in-service performance have not been established. Thus, the primary objective of this task group's project was to identify an accelerated laboratory test method that correlates well with in-service performance.
Technical Paper

Application of Numerical Acoustic Methods to Noise Reduction in Vehicle Compartments

1993-09-01
932433
The advancement of numerical methods for acoustics has enhanced the ability to make meaningful predictions of acoustic responses in vehicle passenger compartments, such as those found in automobiles, trucks, and construction equipment. A design objective of growing importance is to isolate the occupants from both structural and air-borne noise. This paper presents how an indirect boundary element formulation can be used to study the effect of holes on the transmission of air-borne sound, and how design changes effect the transmission of sound through heater and air conditioning ducts. The theoretical background of the indirect formulation is also presented. The significance of this method is that it can include openings in the model while considering the acoustic medium on both sides of the mesh. It is also computationally superior to the direct method because the assembled matrices are symmetric.
Technical Paper

Nonlinear Finite Element Analysis of Diesel Engine Cylinder Head Gasket Joints

1993-09-01
932456
A nonlinear, three-dimensional finite element analysis of the cylinder head gasket joint has been developed to allow accurate prediction of global and local joint behavior during engine operation. Nonlinear material properties and load cases that simulate full cycle engine operation are the analysis foundation. The three-dimensional, nonlinear, full-cycle simulation accurately predicts cylinder head gasket joint response to assembly, thermal, and cylinder pressure loading. Predictions correlate well with measured engine test data. Analysis results include local pressure distribution and global load splits. Insight into joint loading and an improved understanding of overall joint behavior provide the basis for informed design and development decisions.
Technical Paper

Acoustical Finite Element Model of Elastic Porous Materials

1995-04-01
951087
A finite element model (FEM) of elastic noise control materials like polyurethane foams is presented in this paper, and its implementation in two-dimensional form as a computer program is discussed. So that realistic noise control treatments could be studied, methods for coupling the foam FEM with conventional acoustical and structural finite elements are also described. The validity of the foam FEM is demonstrated by computing the sound absorption and transmission characteristics of simple coupled air/foam/panel systems and by comparing the results with existing experimental and analytical results for such arrangements. The FEM has been used to show that the constraint of a foam layer at its edge stiffens the foam acoustically. In addition, it has been found that the constraint of the ends of the facing panels in a foam-lined double panel system increases the sound transmission loss significantly at low frequencies.
Technical Paper

Analysis of Door and Glass Run Seal Systems for Aspiration

1997-05-20
971902
Nonlinear finite element analysis has been applied to determine the conditions conducive to seal system aspiration. Aspiration noise occurs and propagates into the passenger compartment of a vehicle when there exists a gap between the seal and sealing surface due to pressure differential between the vehicle interior and exterior. This pressure differential is created by the vehicle movement which reduces the pressure acting on the exterior surface of the vehicle, and it is on the order of , where ρ and U∞ are the density of air and vehicle speed, respectively. The pressure difference is also created by turning on the climate control system which pressurizes the passenger cavity. Since aspiration increases door seal cavity noise level and creates a direct noise transmission path without any significant transmission loss, the presence of an aspiration noise source can dominate the vehicle interior noise level if it is close to the driver or passenger's ears.
Technical Paper

Acoustic Analysis of Vehicle Ribbed Floor

1997-05-20
971945
Ribbed floor panels have been widely applied in vehicle body structures to reduce interior noise. The conventional approach to evaluate ribbed floor panel designs is to compare natural frequencies and local stiffness. However, this approach may not result in the desired outcome of the reduction in radiated noise. Designing a “quiet” floor panel requires minimizing the total radiated noise resulting from vibration of the floor panel. In this study, the objective of ribbed floor panel design is to reduce the total radiated sound power by optimizing the rib patterns. A parametric study was conducted first to understand the effects of rib design parameters such as rib height, width, orientation, and density. Next, a finite element model of a simplified body structure with ribbed floor panel was built and analyzed. The structural vibration profile was generated using MSCINastran, and integrated with the acoustic boundary element model.
Technical Paper

Finite Element Modeling of Bolt Load Retention of Die-Cast Magnesium

2000-03-06
2000-01-1121
The use of die cast magnesium for automobile transmission cases offers promise for reducing weight and improving fuel economy. However, the inferior creep resistance of magnesium alloys at high temperature is of concern since transmission cases are typically assembled and joined by pre-loaded bolts. The stress relaxation of the material could thus adversely impact the sealing of the joint. One means of assessing the structural integrity of magnesium transmission cases is modeling the bolted joint, the topic of this paper. The commercial finite element code, ABAQUS, was used to simulate a well characterized bolt joint sample. The geometry was simulated with axi-symmetric elements with the exact geometry of a M10 screw. Frictional contact between the male and female parts is modeled by using interface elements. Material creep is described by a time hardening power law whose parameters are fit to experimental creep test data.
X