Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Influence of the Mixture Formation on the Lubrication Oil Emission of Combustion Engines

2010-04-12
2010-01-1275
Partly competing objectives, as low fuel consumption, low friction, long oil maintenance rate, and at the same time lowest exhaust emissions have to be fulfilled. Diminishing resources, continuously reduced development periods, and shortened product cycles yield detailed knowledge about oil consumption mechanisms in combustion engines to be essential. There are different ways for the lubricating oil to enter the combustion chamber: for example as blow-by gas, leakage past valve stem seals, piston rings (reverse blow-by) and evaporation from the cylinder liner wall and the combustion chamber. For a further reduction of oil consumption the investigation of these mechanisms has become more and more important. In this paper the influence of the mixture formation and the resulting fuel content in the cylinder liner wall film on the lubricant oil emission was examined.
Journal Article

Determination of the Cylinder Head Valve Bridge Temperatures in the Concept Phase Using a Novel 1D Calculation Approach

2010-04-12
2010-01-0499
The steady increase of engine power and the demand of lightweight design along with enhanced reliability require an optimized dimensioning process, especially in cylinder head valve bridge, which is progressively prone to cracking. The problems leading to valve bridge cracking are high temperatures and temperature gradients on one hand and high mechanical restraining on the other hand. The accurate temperature estimation at the valve bridge center has significant outcomes for valve bridge thickness and width optimization. This paper presents a 1D heat transfer model, which is constructed through the cross section of the valve bridge center by the use of well known quasi-stationary heat convection and conduction equations and reduced from 3D to 1D via regression and empirical weighting coefficients. Several diesel engine cylinder heads with different application types and materials are used for model setup and verification.
Technical Paper

Development of a Fast-Running Injector Model with Artificial Neural Network (ANN) for the Prediction of Injection Rate with Multiple Injections

2021-09-05
2021-24-0027
The most challenging part of the engine combustion development is the reduction of pollutants (e.g. CO, THC, NOx, soot, etc.) and CO2 emissions. In order to achieve this goal, new combustion techniques are required, which enable a clean and efficient combustion. For compression ignition engines, combustion rate shaping, which manipulates the injected fuel mass to control the in-cylinder pressure trace and the combustion rate itself, turned out to be a promising opportunity. One possibility to enable this technology is the usage of specially developed rate shaping injectors, which can control the injection rate continuously. A feasible solution with series injectors is the usage of multiple injections to control the injection rate and, therefore, the combustion rate. For the control of the combustion profile, a detailed injector model is required for predicting the amount of injected fuel. Simplified 0D models can easily predict single injection rates with low deviation.
Journal Article

A Sectoral Approach to Modelling Wall Heat Transfer in Exhaust Ports and Manifolds for Turbocharged Gasoline Engines

2016-04-05
2016-01-0202
A new approach is presented to modelling wall heat transfer in the exhaust port and manifold within 1D gas exchange simulation to ensure a precise calculation of thermal exhaust enthalpy. One of the principal characteristics of this approach is the partition of the exhaust process in a blow-down and a push-out phase. In addition to the split in two phases, the exhaust system is divided into several sections to consider changes in heat transfer characteristics downstream the exhaust valves. Principally, the convective heat transfer is described by the characteristic numbers of Nusselt, Reynolds and Prandtl. However, the phase individual correlation coefficients are derived from 3D CFD investigations of the flow in the exhaust system combined with Low-Re turbulence modelling. Furthermore, heat losses on the valve and the seat ring surfaces are considered by an empirical model approach.
Journal Article

Engine in the Loop: Closed Loop Test Bench Control with Real-Time Simulation

2017-03-28
2017-01-0219
The complexity of automobile powertrains grows continuously. At the same time, development time and budget are limited. Shifting development tasks to earlier phases (frontloading) increases the efficiency by utilizing test benches instead of prototype vehicles (road-to-rig approach). Early system verification of powertrain components requires a closed-loop coupling to real-time simulation models, comparable to hardware-in-the-loop testing (HiL). The international research project Advanced Co-Simulation Open System Architecture (ACOSAR) has the goal to develop a non-proprietary communication architecture between real-time and non-real-time systems in order to speed up the commissioning process and to decrease the monetary effort for testing and validation. One major outcome will be a generic interface for coupling different simulation tools and real-time systems (e.g. HiL simulators or test benches).
Journal Article

Fuel Cell System Development: A Strong Influence on FCEV Performance

2018-04-03
2018-01-1305
In this article, the development challenges of a fuel cell system are explained using the example of the BREEZE! fuel cell range extender (FC-REX) applied in an FEV Liiona. The FEV Liiona is a battery electric vehicle based on a Fiat 500 developed by FEV. The BREEZE! system is the first applied 30 kW low temperature polymer electrolyte membrane (LT PEM) fuel cell system in the subcompact vehicle class. Due to the highly integrated system approach and dry cathode operation, a compact design of the range extender module with a system power density of 0.45 kW/l can be achieved so that the vehicle interior including trunk remains completely usable. System development for fuel cells significantly influences performance, efficiency, package, durability, and required maintenance effort of a fuel cell electric powertrain. In order to ensure safe and reliable operation, the fuel cell system has to be supplied with sufficient amounts of air, hydrogen, and coolant flows.
Journal Article

Experimental Analysis of the Impact of Injected Biofuels on In-Cylinder Flow Structures

2016-05-18
2016-01-9043
The interaction of biofuel sprays from an outward opening hollow cone injector and the flow field inside an internal combustion engine is analyzed by Mie-Scattering Imaging (MSI) and high-speed stereoscopic particle-image velocimetry (stereo-PIV). Two fuels (ethanol and methyl ethyl ketone (MEK)), four injection pressures (50, 100, 150, and 200 bar), three starting points of injection (60°, 277°, and 297° atdc), and two engine speeds (1,500 rpm and 2,000 rpm) define the parameter space of the experiments. The MSI measurements determine the vertical penetration length and the spray cone angle of the ethanol and MEK spray. Stereo-PIV is used to investigate the interaction of the flow field and the ethanol spray after the injection process for a start of injection at 60° atdc. These measurements are compared to stereo-PIV measurements without fuel injection performed in the same engine [19].
Journal Article

Laser-Induced Incandescence Measurements of Tailor-Made Fuels in an Optical Single-Cylinder Diesel Engine

2017-03-28
2017-01-0711
The influence of two oxygenated tailor-made fuels on soot formation and oxidation in an optical single cylinder research diesel engine has been studied. For the investigation a planar laser-induced incandescence (PLII) measurement technique was applied to the engine in order to detect and evaluate the planar soot distribution for the two bio fuels within a laser light sheet. Furthermore the OH* chemiluminescence and broad band soot luminosity was visualized by high speed imaging to compare the ignition and combustion behavior of tested fuels: Two C8 oxygenates, di-n-butylether (DNBE) and 1-octanol. Both fuels have the same molecular formula but differ in their molecular structure. DNBE ignites fast and burns mostly diffusive while 1-octanol has a low cetane number and therefore it has a longer ignition delay but a more homogeneous mixture at time of ignition. The two bio fuels were finally compared to conventional diesel fuel.
Technical Paper

Potential Analysis and Virtual Development of SI Engines Operated with Synthetic Fuel DMC+

2020-04-14
2020-01-0342
On the way to emission-free mobility, future fuels must be CO2 neutral. To achieve this, synthetic fuels are being developed. In order to better assess the effects of the new fuels on the engine process, simulation models are being developed that reproduce the chemical and physical properties of these fuels. In this paper, the fuel DMC+ is examined. DMC+ (a mixture of dimethyl carbonate (DMC) and methyl formate (MeFo) mainly, characterized by the lack of C-C Bonds and high oxygen content) offers advantages with regard to evaporation heat, demand of oxygen and knock resistance. Furthermore, its combustion is almost particle free. With the aid of modern 0D/1D simulation methods, an assessment of the potential of DMC+ can be made. It is shown that the simulative conversion of a state-of-the-art gasoline engine to DMC+ fuel offers advantages in terms of efficiency in many operating points even if the engine design is not altered.
Technical Paper

Hardware-in-the-Loop Testing of Electric Traction Drives with an Efficiency Optimized DC-DC Converter Control

2020-04-14
2020-01-0462
In order to reduce development cost and time, frontloading is an established methodology for automotive development programs. With this approach, particular development tasks are shifted to earlier program phases. One prerequisite for this approach is the application of Hardware-in-the-Loop test setups. Hardware-in-the-Loop methodologies have already successfully been applied to conventional as well as electrified powertrains considering various driving scenarios. Regarding driving performance and energy demand, electrified powertrains are highly dependent on the dc-link voltage. However, there is a particular shortage of studies focusing on the verification of variable dc-link voltage controls by Hardware-in-the-Loop setups. This article is intended to be a first step towards closing this gap. Thereto, a Hardware-in-the-Loop setup of a battery electric vehicle is developed.
Technical Paper

Objectified Evaluation and Classification of Passenger Vehicles Longitudinal Drivability Capabilities in Automated Load Change Drive Maneuvers at Engine-in-the-Loop Test Benches

2020-04-14
2020-01-0245
The growing number of passenger car variants and derivatives in all global markets, their high degree of software differentiability caused by regionally different legislative regulations, as well as pronounced market-specific customer expectations require a continuous optimization of the entire vehicle development process. In addition, ever stricter emission standards lead to a considerable increase in powertrain hardware and control complexity. Also, efforts to achieve market and brand specific multistep adjustable drivability characteristics as unique selling proposition, rapidly extend the scope for calibration and testing tasks during the development of powertrain control units. The resulting extent of interdependencies between the drivability calibration and other development and calibration tasks requires frontloading of development tasks.
Technical Paper

LES Modeling Study on Cycle-to-Cycle Variations in a DISI Engine

2020-04-14
2020-01-0242
The reduction of cycle-to-cycle variations (CCV) is a prerequisite for the development and control of spark-ignition engines with increased efficiency and reduced engine-out emissions. To this end, Large-Eddy Simulations (LES) can improve the understanding of stochastic in-cylinder phenomena during the engine design process, if the employed modeling approach is sufficiently accurate. In this work, an inhouse code has been used to investigate CCV in a direct-injected spark ignition (DISI) engine under fuel-lean conditions with respect to a stoichiometric baseline operating point. It is shown that the crank angle when a characteristic fuel mass fraction is burned, e.g. MFB50, correlates with the equivalence ratio computed as a local average in the vicinity of the spark plug. The lean operating point exhibits significant CCV, which are shown to be correlated also with the in-cylinder subfilter-scale (SFS) kinetic energy.
Journal Article

Virtual 48 V Mild Hybridization: Efficient Validation by Engine-in-the-Loop

2018-04-03
2018-01-0410
New 12 V/48 V power net architectures are potential solutions to close the gap between customer needs and legislative requirements. In order to exploit their potential, an increased effort is needed for functional implementation and hardware integration. Shifting of development tasks to earlier phases (frontloading) is a promising solution to streamline the development process and to increase the maturity level at early stages. This study shows the potential of the frontloading of development tasks by implementing a virtual 48 V mild hybridization in an engine-in-the-loop (EiL) setup. Advanced simulation technics like functional mock-up interface- (FMI) based co-simulation are utilized for the seamless integration of the real-time (RT) simulation models and allow a modular simulation framework as well as a decrease in development time.
Journal Article

Cylinder Head Design for High Peak Firing Pressures

2008-04-14
2008-01-1196
Torque and performance requirements of Diesel engines are continually increasing while lower emissions and fuel consumption are demanded, thus increasing thermal and mechanical loads of the main components. The level of peak firing pressure is approaching 200 bar (even higher in Heavy Duty Diesel engines), consequently, a structural optimization of crankcase, crank train components and in particular of the cylinder head is required to cope with the increasing demands. This report discusses design features of cylinder head concepts which have the capability for increasing thermal and mechanical loads in modern Diesel engines
Journal Article

A Cycle-Based Multi-Zone Simulation Approach Including Cycle-to-Cycle Dynamics for the Development of a Controller for PCCI Combustion

2009-04-20
2009-01-0671
Subject of this work is a simulation model for PCCI combustion that can be used in closed-loop control development. A detailed multi-zone chemistry model for the high-pressure part of the engine cycle is extended by a mean value model accounting for the gas exchange losses. The resulting model is capable of describing PCCI combustion with stationary excactness. It is at the same time very economic with respect to computational costs. The model is further extended by identified system dynamics influencing the stationary inputs. For this, a Wiener model is set up that uses the stationary model as a nonlinear system representation. In this way, a dynamic nonlinear model for the representation of the controlled plant Diesel engine is created.
Journal Article

Numerical Investigation of Direct Gas Injection in an Optical Internal Combustion Engine

2018-04-03
2018-01-0171
Direct injection (DI) of compressed natural gas (CNG) is a promising technology to increase the indicated thermal efficiency of internal combustion engines (ICE) while reducing exhaust emissions and using a relatively low-cost fuel. However, design and analysis of DI-CNG engines are challenging because supersonic gas jet emerging from the DI injector results in a very complex in-cylinder flow field containing shocks and discontinuities affecting the fuel-air mixing. In this article, numerical simulations are used supported by validation to investigate the direct gas injection and its influence on the flow field and mixing in an optically accessible ICE. The simulation approach involves computation of the in-nozzle flow with highly accurate Large-Eddy Simulations, which are then used to obtain a mapped boundary condition. The boundary condition is applied in Unsteady Reynolds Averaged Navier-Stokes simulations of the engine to investigate the in-cylinder velocity and mixing fields.
Journal Article

Hardware-in-the-Loop-Based Virtual Calibration Approach to Meet Real Driving Emissions Requirements

2018-04-03
2018-01-0869
The use of state-of-the-art model-based calibration tools generate only limited benefits for seamless validation in powertrain calibration due to the often neglected system-level simulation of a closed-loop vehicle environment. This study presents a Hardware-in-the-Loop (HiL)-based virtual calibration approach to establish an accurate virtual calibration platform using physical plant models. It is based on a customisable real-time HiL simulation environment. The use of physical models to predict the behaviour of a complete powertrain makes the HiL test bench particularly suited for Engine Control Unit (ECU) calibration. With the virtual test rig approach, the calibration for the critical extended driving and ambient conditions of the new Real Driving Emissions (RDE) requirements can efficiently be optimised. This technique offers a clear advantage in terms of reducing calibration time and costs.
Journal Article

Crank-Angle Resolved Real-Time Engine Modelling: A Seamless Transfer from Concept Design to HiL Testing

2018-04-03
2018-01-1245
Virtual system integration and testing using hardware-in-the-loop (HiL) simulation enables front-loading of development tasks, provides a safer and reliable testing environment and reduces prototype hardware costs. One of the greatest challenges to overcome when performing HiL simulations is assuring a high model accuracy under stringent real-time requirements with acceptable development effort. This article represents a novel solution by deriving the plant model for HiL directly from the existing detailed models from the component layout phase using co-simulation methodology. It provides an effective and efficient model implementation and validation process followed by detailed quantitative analysis of the test results referred to the engine test bench measurements.
Journal Article

Effects of Cavitation and Hydraulic Flip in 3-Hole GDI Injectors

2017-03-28
2017-01-0848
The performance of Gasoline Direct Injection (GDI) engines is governed by multiple physical processes such as the internal nozzle flow and the mixing of the liquid stream with the gaseous ambient environment. A detailed knowledge of these processes even for complex injectors is very important for improving the design and performance of combustion engines all the way to pollutant formation and emissions. However, many processes are still not completely understood, which is partly caused by their restricted experimental accessibility. Thus, high-fidelity simulations can be helpful to obtain further understanding of GDI injectors. In this work, advanced simulation and experimental methods are combined in order to study the spray characteristics of two different 3-hole GDI injectors.
Journal Article

Characterization of Hollow Cone Gas Jets in the Context of Direct Gas Injection in Internal Combustion Engines

2018-04-03
2018-01-0296
Direct injection (DI) compressed natural gas (CNG) engines are emerging as a promising technology for highly efficient and low-emission engines. However, the design of DI systems for compressible gas is challenging due to supersonic flows and the occurrence of shocks. An outwardly opening poppet-type valve design is widely used for DI-CNG. The formation of a hollow cone gas jet resulting from this configuration, its subsequent collapse, and mixing is challenging to characterize using experimental methods. Therefore, numerical simulations can be helpful to understand the process and later to develop models for engine simulations. In this article, the results of high-fidelity large-eddy simulation (LES) of a stand-alone injector are discussed to understand the evolution of the hollow cone gas jet better.
X