Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Developing Safety Standards for FCVs and Hydrogen Vehicles

2009-04-20
2009-01-0011
The SAE Fuel Cell Vehicle (FCV) Safety Working Group has been addressing FCV safety for over 9 years. The initial document, SAE J2578, was published in 2002. SAE J2578 has been valuable as a Recommended Practice for FCV development with regard to the identification of hazards and the definition of countermeasures to mitigate these hazards such that FCVs can be operated in the same manner as conventional gasoline internal combustion engine (ICE)-powered vehicles. SAE J2578 is currently being revised so that it will continue to be relevant as FCV development moves forward. For example, test methods were refined to verify the acceptability of hydrogen discharges when parking in residential garages and commercial structures and after crash tests prescribed by government regulation, and electrical requirements were updated to reflect the complexities of modern electrical circuits which interconnect both AC and DC circuits to improve efficiency and reduce cost.
Technical Paper

Control of a Brushless PM Traction Drive Following a Winding or Power Semiconductor Failure

2004-03-08
2004-01-0568
The paper considers the implications of typical faults on the operation and control of a permanent magnet (PM) traction drive. The discussion is illustrated with analyses and test results taken from a vector controlled, imbedded magnet design of PM motor that has been prototyped for a future fuel cell powered mid size car. In particular the paper describes the outcome of an experimental investigation where a series of representative faults have been imposed on the prototype machine. The impact of the various faults and the subsequent fault control on the drive system are presented in terms of braking torque, and maximum current requirements.
Technical Paper

Recent Results on Liquid Fuelled APU for Truck Application

2003-03-03
2003-01-0266
A liquid fuelled, fuel cell auxiliary power unit (APU) can provide efficient, quiet and low pollution power for a variety of applications including commercial and military vehicles. Truck idling regulation, customer comfort or military “stealth” operation by using electrical power, require a device disconnected from the main diesel engine. The power can be utilized for air conditioning as well as other auxiliary systems found on board commercial trucks for driver comfort. In a military vehicle, this regulated power could be supplied to telecommunication and other computer equipment required for military operations. A system designed to be an add-on or retrofit solution using alternative fuel can have the potential to meet these requirements on the hundreds of thousands of existing vehicles currently in service or as optional equipment on a newly procured vehicle.
Technical Paper

Synthetic Hydrocarbon Fuel for APU Application: The Fuel Processor System

2003-03-03
2003-01-0267
Fuel cell Auxiliary Power Units (APUs) can use a variety of fuels as a hydrogen carrier. Projects showing the use of hydrogen as a fuel for an APU have been completed and the prospects of using methanol as an alternative fuel has been discussed before. Despite the success of the previous fuel cell APU demonstrations, potential military and commercial customers desire a single on-board fuel for the main propulsion engine and for the APU. Such an application would require a fuel processor that can produce sufficiently pure hydrogen for utilization in a fuel cell from prevailing hydrocarbon fuels. The position of the U.S. Army's National Automotive Center (NAC) is to address this challenge by first using a synthetic diesel fuel as part of a phased fuel reformation program. This paper presents an analysis of the use of a synthetic fuel as a hydrogen carrier.
X