Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Natural Gas and Diesel Transit Bus Emissions: Review and Recent Data

1997-11-17
973203
Natural Gas engines are viewed as an alternative to diesel power in the quest to reduce heavy duty vehicle emissions in polluted urban areas. In particular, it is acknowledged that natural gas has the potential to reduce the inventory of particulate matter, and this has encouraged the use of natural gas engines in transit bus applications. Extensive data on natural gas and diesel bus emissions have been gathered using two Transportable Heavy Duty Vehicle Emissions Testing Laboratories, that employ chassis dynamometers to simulate bus inertia and road load. Most of the natural gas buses tested prior to 1997 were powered by Cummins L-10 engines, which were lean-burn and employed a mechanical mixer for fuel introduction. The Central Business District (CBD) cycle was used as the test schedule.
Technical Paper

Extent of Indoor Flammable Plumes Resulting from CNG Bus Fuel System Leaks

1992-11-01
922486
A validated three-dimensional mathematical model was used to examine the extent of flammable plumes resulting from both large and small CNG leak scenarios inside a typical transit maintenance and storage facility ventilated at a rate of five air changes per hour. The leak rates used were based on an engineering and experimental analysis of actual CNG bus fuel system components. The results showed that both large and small CNG leaks produced flammable plumes, such plumes extended from a half a bus length to several bus lengths away from the leak source, and the plume from a large leak formed a layer along the ceiling before being dispersed by building ventilation.
Technical Paper

Alternative Fuel Transit Bus Evaluation Program Results

1996-05-01
961082
The objective of this program, which is supported by the U.S. Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL), is to provide an unbiased and comprehensive comparison of transit buses operating on alternative fuels and diesel fuel. The information for this comparison was collected from eight transit bus sites. The fuels studied are natural gas (CNG and LNG), alcohol (methanol and ethanol), biodiesel (20 percent blend), propane (only projected capital costs; no sites with heavy-duty propane engines were available for studying operating experience), and diesel. Data was collected on operations, maintenance, bus equipment configurations, emissions, bus duty cycle, and safety incidents. Representative and actual capital costs were collected for alternative fuels and were used as estimates for conversion costs. This paper presents preliminary results.
Technical Paper

Performance Considerations for Run-Off-Road Countermeasure Systems for Cars and Trucks

1999-03-01
1999-01-0820
Extensive modeling and simulation studies have been carried out to evaluate the performance of systems for avoiding run-off-road crashes. Results show that the effectiveness of in-vehicle crash avoidance systems depends on how well they can be tailored to specific vehicle, driver, and roadway characteristics. To this end, a major focus of these studies is the development of improved driver lane-keeping models based on statistical analyses of data collected in driving experiments conducted on highways, rural roads, and test tracks. In recent simulation studies using improved driver models, the performance of crash avoidance systems in tractor-trailers and passenger cars has been compared over a wide range of incipient run-off-road crash conditions. Heavy trucks present a greater challenge for run-off-road crash avoidance systems, because they slightly but frequently leave the lane even under controlled driving, and because they are less stable during recovery maneuvers.
Technical Paper

Interim Results from Alternative Fuel Truck Evaluation Project

1999-05-03
1999-01-1505
The objective of this project, which is supported by the U.S. Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL), is to provide a comprehensive comparison of heavy-duty trucks operating on alternative fuels and diesel fuel. Data collection from up to eight sites is planned. Currently, the project has four sites: Raley's in Sacramento, CA (Kenworth, Cummins L10-300G, liquefied natural gas - LNG); Pima Gro Systems, Inc. in Fontana, CA (White/GMC, Caterpillar 3176B Dual-Fuel, compressed natural gas - CNG); Waste Management in Washington, PA (Mack, Mack E7G, LNG); and United Parcel Service in Hartford, CT (Freightliner Custom Chassis, Cummins B5.9G, CNG). This paper summarizes current data collection and evaluation results from this project.
Technical Paper

Class 8 Trucks Operating On Ultra-Low Sulfur Diesel With Particulate Filter Systems: A Fleet Start-Up Experience

2000-10-16
2000-01-2821
Previous studies have shown that regenerating particulate filters are very effective at reducing particulate matter emissions from diesel engines. Some particulate filters are passive devices that can be installed in place of the muffler on both new and older model diesel engines. These passive devices could potentially be used to retrofit large numbers of trucks and buses already in service, to substantially reduce particulate matter emissions. Catalyst-type particulate filters must be used with diesel fuels having low sulfur content to avoid poisoning the catalyst. A project has been launched to evaluate a truck fleet retrofitted with two types of passive particulate filter systems and operating on diesel fuel having ultra-low sulfur content. The objective of this project is to evaluate new particulate filter and fuel technology in service, using a fleet of twenty Class 8 grocery store trucks. This paper summarizes the truck fleet start-up experience.
X