Refine Your Search

Topic

Author

Search Results

Video

Test Method for Seat Wrinkling and Bagginess

2012-05-22
This study evaluates utilizing an accelerated test method that correlates customer interaction with a vehicle seat where bagginess and wrinkling is produced. The evaluation includes correlation from warranty returns as well as test vehicle results for test verification. Consumer metrics will be discussed within this paper with respect to potential application of this test method, including but not limited to JD Power ratings. The intent of the test method is to aid in establishing appropriate design parameters of the seat trim covers and to incorporate appropriate design measures such as tie downs and lamination. This test procedure was utilized in a Design for Six Sigma (DFSS) project as an aid in optimizing seat parameters influencing trim cover performance using a Design of Experiment approach. Presenter Lisa Fallon, General Motors LLC
Technical Paper

Experimental GT-POWER Correlation Techniques and Best Practices Low Frequency Acoustic Modeling of the Intake System of a Turbocharged Engine

2017-06-05
2017-01-1794
As regulations become increasingly stringent and customer expectations of vehicle refinement increase, the accurate control and prediction of induction system airborne acoustics are a critical factor in creating a vehicle that wins in the marketplace. The goal of this project was to improve the predicative accuracy of a 1-D GT-power engine and induction model and to update internal best practices for modeling. The paper will explore the details of an induction focused correlation project that was performed on a spark ignition turbocharged inline four-cylinder engine. This paper and SAE paper “Experimental GT-POWER Correlation Techniques and Best Practices” share similar abstracts and introductions; however, they were split for readability and to keep the focus on a single a single subsystem. This paper compares 1D GT-Power engine air induction system (AIS) sound predictions with chassis dyno experimental measurements during a fixed gear, full-load speed sweep.
Technical Paper

Self-Certification Requirements for Adaptive Driving Beam Headlamps

2017-03-28
2017-01-1365
Vehicle certification requirements generally fall into 2 categories: self-certification and various forms of type approval. Self-certification requirements used in the United States under Federal Motor Vehicle Safety Standards (FMVSS) regulations must be objective and measurable with clear pass / fail criteria. On the other hand, Type Approval requirements used in Europe under United Nations Economic Commission for Europe (UNECE) regulations can be more open ended, relying on the mandated 3rd party certification agency to appropriately interpret and apply the requirements based on the design and configuration of a vehicle. The use of 3rd party certification is especially helpful when applying regulatory requirements for complex vehicle systems that operate dynamically, changing based on inputs from the surrounding environment. One such system is Adaptive Driving Beam (ADB).
Technical Paper

Traditional and Electronic Solutions to Mitigate Electrified Vehicle Driveline Noises

2017-06-05
2017-01-1755
Hybrid powertrain vehicles inherently create discontinuous sounds during operation. The discontinuous noise created from the electrical motors during transition states are undesirable since they can create tones that do not correlate with the dynamics of the vehicle. The audible level of these motor whines and discontinuous tones can be reduced via common noise abatement techniques or reducing the amount of regeneration braking. One electronic solution which does not affect mass or fuel economy is Masking Sound Enhancement (MSE). MSE is an algorithm that uses the infotainment system to mask the naturally occurring discontinuous hybrid drive unit and driveline tones. MSE enables a variety of benefits, such as more aggressive regenerative braking strategies which yield higher levels of fuel economy and results in a more pleasing interior vehicle powertrain sound. This paper will discuss the techniques and signals used to implement MSE in a hybrid powertrain equipped vehicle.
Technical Paper

A System of Systems Approach to Automotive Challenges

2018-04-03
2018-01-0752
The automotive industry is facing many significant challenges that go far beyond the design and manufacturing of automobile products. Connected, autonomous and electric vehicles, smart cities, urbanization and the car sharing economy all present challenges in a fast-changing environment which the automotive industry must adapt to. Cars no longer are just standalone systems, but have become constituent systems (CS) in larger System of Systems (SoS) context. This is reflected in the emergence of several acronyms such as vehicle-to-everything (V2X), vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and vehicle-to-grid (V2G) expressions. System of Systems are defined systems of interest whose elements (constituent systems) are managerially and operationally independent systems. This interoperating and/or integrated collection of constituent systems usually produce results unachievable by the individual systems alone, for example the use of car batteries as virtual power plants.
Technical Paper

Initial Comparisons of Friction Stir Spot Welding and Self Piercing Riveting of Ultra-Thin Steel Sheet

2018-04-03
2018-01-1236
Due to the limitations on resistance spot welding of ultra-thin steel sheet (thicknesses below 0.5 mm) in high-volume automotive manufacturing, a comparison of friction stir spot welding and self-piercing riveting was performed to determine which process may be more amenable to enabling assembly of ultra-thin steel sheet. Statistical comparisons between mechanical properties of lap-shear tensile and T-peel were made in sheet thickness below 0.5 mm and for dissimilar thickness combinations. An evaluation of energy to fracture, fracture mechanisms, and joint consistency is presented.
Technical Paper

Design and Control of Torque Feedback Device for Driving Simulator Based on MR Fluid and Coil Spring Structure

2018-04-03
2018-01-0689
Since steering wheel torque feedback is one of the crucial factors for drivers to gain road feel and ensure driving safety, it is especially important to simulate the steering torque feedback for a driving simulator. At present, steering wheel feedback torque is mainly simulated by an electric motor with gear transmission. The torque response is typically slow, which can result in drivers’ discomfort and poor driving maneuverability. This paper presents a novel torque feedback device with magnetorheological (MR) fluid and coil spring. A phase separation control method is also proposed to control its feedback torque, including spring and damping torques respectively. The spring torque is generated by coil spring, the angle of coil spring can be adjusted by controlling a brushless DC motor. The damping torque is generated by MR fluid, the damping coefficient of MR fluid can be adjusted by controlling the current of excitation coil.
Technical Paper

Determining the Greenhouse Gas Emissions Benefit of an Adaptive Cruise Control System Using Real-World Driving Data

2019-04-02
2019-01-0310
Adaptive cruise control is an advanced vehicle technology that is unique in its ability to govern vehicle behavior for extended periods of distance and time. As opposed to standard cruise control, adaptive cruise control can remain active through moderate to heavy traffic congestion, and can more effectively reduce greenhouse gas emissions. Its ability to reduce greenhouse gas emissions is derived primarily from two physical phenomena: platooning and controlled acceleration. Platooning refers to reductions in aerodynamic drag resulting from opportunistic following distances from the vehicle ahead, and controlled acceleration refers to the ability of adaptive cruise control to accelerate the vehicle in an energy efficient manner. This research calculates the measured greenhouse gas emissions benefit of adaptive cruise control on a fleet of 51 vehicles over 62 days and 199,300 miles.
Technical Paper

Development of the TOP TIERTM Diesel Standard

2019-04-02
2019-01-0264
The TOP TIERTM Diesel fuel standard was first established in 2017 to promote better fuel quality in marketplace to address the needs of diesel engines. It provides an automotive recommended fuel specification to be used in tandem with regional diesel fuel specifications or regulations. This fuel standard was developed by TOP TIERTM Diesel Original Equipment Manufacturer (OEM) sponsors made up of representatives of diesel auto and engine manufacturers. This performance specification developed after two years of discussions with various stakeholders such as individual OEMs, members of Truck and Engine Manufacturers Association (EMA), fuel additive companies, as well as fuel producers and marketers. This paper reviews the major aspects of the development of the TOP TIERTM Diesel program including implementation and market adoption challenges.
Technical Paper

An Efficient Trivial Principal Component Regression (TPCR)

2019-04-02
2019-01-0515
Understanding a system behavior involves developing an accurate relationship between the explanatory (predictive) variables and the output response. When the observed data is ill-conditioned with potential collinear correlations among the measured variables, some of the statistical methods such as least squared method (LSM) fail to generate good predictive models. In those situations, other methods like Principal Component Regression (PCR) are generally applicable. Additionally, the PCR reduces the dimensionality of the system by making use of covariance relationship among the variables. In this paper, an improved regression method over PCR is proposed, which is based on the Trivial Principal Components (TPC). The TPC regression (TPCR) makes use of the covariance of the output response and predictive variables while extracting principal components. A new method of selecting potential principal components for variable reduction in TPCR is also proposed and validated.
Technical Paper

Virtual Traffic Simulator for Connected and Automated Vehicles

2019-04-02
2019-01-0676
Connected and automated vehicle (CAV) technologies promise a substantial decrease in traffic accidents and traffic jams, and bring new opportunities for improving vehicle’s fuel economy. However, testing autonomous vehicles in a real world traffic environment is costly, and covering all corner cases is nearly impossible. Furthermore, it is very challenging to create a controlled real traffic environment that vehicle tests can be conducted repeatedly and compared fairly. With the capability of allowing testing more scenarios than those that would be possible with real world testing, simulations are deemed safer, more efficient, and more cost-effective. In this work, a full-scale simulation platform was developed to simulate the infrastructure, traffic, vehicle, powertrain, and their interactions. It is used as an effective tool to facilitate control algorithm development for improving CAV’s fuel economy in real world driving scenarios.
Technical Paper

A System Safety Perspective into Chevy Bolt’s One Pedal Driving

2019-04-02
2019-01-0133
The Chevy Bolt’s One Pedal Driving feature is a new electrification propulsion enhancement that allows the driver to accelerate, decelerate and hold their vehicle stationary by just using the accelerator pedal. With this new feature, the driver is relieved of having to switch between pressing the accelerator pedal and brake pedal to slow, stop and hold the vehicle stationary. While this feature provides a convenience to the driver, it also presents a paradigm shift in driver engagement and control system responsibility for executing certain functions that the driver was traditionally responsible to perform. Various system safety techniques were involved in the development of such a feature both from a traditional functional safety perspective as well as a Safety of the Intended Functionality (SOTIF) perspective.
Technical Paper

Evaluation of V2V Reception Cadence- A New Metric for System Level Performance Analysis

2019-01-16
2019-01-0102
Vehicle to Everything (V2X) communication is a prominent solution for active safety collision avoidance and for providing autonomous vehicles Non-Line of Sight (NLOS) capabilities. For safety purposes, it is essential the V2X technology would support communication between all road users, e.g., Vehicles (V2V), pedestrians (V2P) and road infrastructure (V2I). Hence, the efficiency of a V2V communication solution should be evaluated through system level performance. In addition, the examined performance metrics need to reflect safety related properties. Metrics as Packet Reception Ratio (PRR) and transmission latencies, which are commonly used to assess V2X system’s functionality, aren’t enough since reception latencies are overlooked. The latter is crucial in ensuring messages would reach their destination on time to avoid hazardous incidents. The reception cadence may be much lower than this of the transmission due to various phenomenon (e.g. channel congestion).
Technical Paper

Benefits and Application Bandwidth of Phenolic Piston Material in Opposed Piston Calipers

2019-09-15
2019-01-2123
The use of reinforced phenolic composite material in application to hydraulic pistons for brake calipers has been well established in the industry - for sliding calipers (and certain fixed calipers with high piston length to diameter ratios). For decades, customers have enjoyed lower brake fluid temperatures, mass savings, improved corrosion resistance, and smoother brake operation (less judder). However, some persistent concerns remain about the use of phenolic materials for opposed piston calipers. The present work explores two key questions about phenolic piston application in opposed piston calipers. Firstly, do opposed piston calipers see similar benefits? Do high performance aluminum bodied calipers, where the piston may no longer be a dominant heat flow path into the fluid (due to a large amount of conduction and cooling enabled by the housing), still enjoy fluid temperature reductions?
Technical Paper

Braking with a Trailer and Mountain Pass Descent

2019-09-15
2019-01-2116
A truly strange - but very interesting - juxtaposition of thought occurs when considering customer’s deceleration needs for towing heavy trailers in mountainous regions, and the seemingly very different area of sizing brakes for Battery Electric Vehicles (BEV) and other regenerative braking-intensive vehicle applications, versus brakes for heavy-duty trucks and other vehicles rated to tow heavy trailers. The common threads between these two very different categories of vehicles include (a) heavy dependence on the powertrain and other non-brake sources of energy loss to control the speed of the vehicle on the grade and ensure adequate capacity of the brake system, (b) a need to consider descent conditions where towing a heavy trailer is feasible (in the case of heavy trailer towing) or initiating a descent with a full state of charge is realistic (in the case of BEVs), which forces consideration of different descents versus the typical (for brake engineers) mountain peak descent.
Technical Paper

Analytical Evaluation of Engine and Vehicle Hardware Effects on Vehicle Response

2019-04-02
2019-01-1283
As the proliferation of downsized boosted engines continues, it becomes increasingly important to understand how engine and vehicle hardware impact vehicle transient response. Several different methodologies can be used to understand hardware impacts, such as vehicle testing, 0-D vehicle models, and constant engine speed load steps. The next evolution of predicting vehicle transient response is to transition to a system level vehicle analysis by coupling a detailed engine model, utilizing crank angle resolved calculations, with a simple vehicle model. This allows for the evaluation of engine and vehicle hardware effects on vehicle acceleration and the rate of change of vehicle acceleration, or jerk, and the tradeoffs that can be made between the hardware in early program development. By comparing this system level vehicle model to the different methodologies, it can be shown that a system level vehicle analysis allows for higher fidelity evaluations of vehicle transient response.
Technical Paper

Efficiency Evaluation of Lower Viscosity ATF in a Planetary Automatic Transmission for Improved Fuel Economy

2019-04-02
2019-01-1296
With continued industry focus on reducing parasitic transmission and driveline losses, detailed studies are required to quantify potential enablers to improve vehicle fuel economy. Investigations were undertaken to understand the influence of lower viscosity Automatic Transmission Fluids (ATF) on transmission efficiency as compared with conventional fluids. The objectives of this study were to quantify the losses of lower viscosity ATF as compared with conventional ATF, and to understand the influence of ATF properties including viscosities, base oil types, and additive packages on fuel efficiency. The transmission efficiency investigations were conducted on a test bench following a vehicle-based break-in of the transmission using a prescribed drive cycle on a chassis dynamometer. At low temperature, the lower viscosity ATF showed a clear advantage over the conventional ATF in both spin loss and loaded efficiency evaluations.
Technical Paper

Real-Time Automatic Test of AEB with Brake System in the Loop

2018-04-03
2018-01-1450
The limitation of drivers' attention and perception may bring collision dangers, Autonomous Emergency Braking (AEB) can help drivers to avoid the potential collisions through active braking. Since the positive effect of it, motor corporations have begun to equip their vehicles with the system, and regulatory agencies in various countries have introduced test standards. At this stage, the actuator of AEB usually adopts Electronic Stability Program (ESP), but it poor performance of continuous working period and active pressure built-up for all wheels limits its implements. Electromechanical brake booster can realize power assisted brake without relying on the vacuum source and a variety of specific power curves. Moreover it can achieve the active braking with a rapid response, which make it can fulfill requirements of automotive electric and intelligent development.
Technical Paper

A Nonlinear Slip Ratio Observer Based on ISS Method for Electric Vehicles

2018-04-03
2018-01-0557
Knowledge of the tire slip ratio can greatly improve vehicle longitudinal stability and its dynamic performance. Most conventional slip ratio observers were mainly designed based on input of non-driven wheel speed and estimated vehicle speed. However, they are not applicable for electric vehicles (EVs) with four in-wheel motors. Also conventional methods on speed estimation via integration of accelerometer signals can often lead to large offset by long-time integral calculation. Further, model uncertainties, including steady state error and unmodeled dynamics, are considered as additive disturbances, and may affect the stability of the system with estimated state error. This paper proposes a novel slip ratio observer based on input-to-state stability (ISS) method for electric vehicles with four-wheel independent driving motors.
Technical Paper

Investigation of the Impact of Fuel Properties on Particulate Number Emission of a Modern Gasoline Direct Injection Engine

2018-04-03
2018-01-0358
Gasoline Direct Injection (GDI) has become the preferred technology for spark-ignition engines resulting in greater specific power output and lower fuel consumption, and consequently reduction in CO2 emission. However, GDI engines face a substantial challenge in meeting new and future emission limits, especially the stringent particle number (PN) emissions recently introduced in Europe and China. Studies have shown that the fuel used by a vehicle has a significant impact on engine out emissions. In this study, nine fuels with varying chemical composition and physical properties were tested on a modern turbo-charged side-mounted GDI engine with design changes to reduce particulate emissions. The fuels tested included four fuels meeting US certification requirements; two fuels meeting European certification requirements; and one fuel meeting China 6 certification requirements being proposed at the time of this work.
X