Refine Your Search

Topic

Affiliation

Search Results

Journal Article

Recent Advances in the Development of Hyundai · Kia's Fuel Cell Electric Vehicles

2010-04-12
2010-01-1089
Wide attention to fuel cell electric vehicles (FCEVs) comes from two huge issues currently the world is facing with: the concern of the petroleum reserves depletion due to consequent oil dependence and the earth global warming due in some extent to vehicle emissions. In this background, Hyundai, along with its sister company Kia, has been building the FCEVs and operating their test fleet with several tens of units at home and abroad. Since 2004, 32 passenger vehicles have been offered for the Department of Energy's controlled hydrogen fleet and infrastructure demonstration and validation project in the U.S. In the meantime, from 2006, 30 passenger vehicles as well as four buses, featuring the in-house developed fuel cell stack and its associated components, are currently under the domestic operation for the FCEV learning demonstration led by the Ministry of Knowledge and Economy.
Journal Article

A Primer on Building a Hardware in the Loop Simulation and Validation for a 6X4 Tractor Trailer Model

2014-04-01
2014-01-0118
This research was to model a 6×4 tractor-trailer rig using TruckSim and simulate severe braking maneuvers with hardware in the loop and software in the loop simulations. For the hardware in the loop simulation (HIL), the tractor model was integrated with a 4s4m anti-lock braking system (ABS) and straight line braking tests were conducted. In developing the model, over 100 vehicle parameters were acquired from a real production tractor and entered into TruckSim. For the HIL simulation, the hardware consisted of a 4s4m ABS braking system with six brake chambers, four modulators, a treadle and an electronic control unit (ECU). A dSPACE simulator was used as the “interface” between the TruckSim computer model and the hardware.
Journal Article

Integrated Chassis Control for Improving On-Center Handling Behavior

2014-04-01
2014-01-0139
This paper proposes a new integrated chassis control (ICC) using a predictive model-based control (MPC) for optimal allocation of sub-chassis control systems where a predictive model has 6 Degree of Freedom (DoF) for rigid body dynamics. The 6 DoF predictive vehicle model consists of longitudinal, lateral, vertical, roll, pitch, and yaw motions while previous MPC research uses a 3 DoF maximally predictive model such as longitudinal, lateral and yaw motions. The sub-chassis control systems in this paper include four wheel individual braking torque control, four wheel individual driving torque control and four corner active suspension control. Intermediate control inputs for sub-chassis control systems are simplified as wheel slip ratio changes for driving and braking controls and vertical suspension force changes for an active suspension control.
Journal Article

Mode-Dynamic Task Allocation and Scheduling for an Engine Management Real-Time System Using a Multicore Microcontroller

2014-04-01
2014-01-0257
A variety of methodologies to use embedded multicore controllers efficiently has been discussed in the last years. Several assumptions are usually made in the automotive domain, such as static assignment of tasks to the cores. This paper shows an approach for efficient task allocation depending on different system modes. An engine management system (EMS) is used as application example, and the performance improvement compared to static allocation is assessed. The paper is structured as follows: First the control algorithms for the EMS will be classified according to operating modes. The classified algorithms will be allocated to the cores, depending on the operating mode. We identify mode transition points, allowing a reliable switch without neglecting timing requirements. As a next step, it will be shown that a load distribution by mode-dependent task allocation would be better balanced than a static task allocation.
Technical Paper

Development of the Active Sound Generation Technology Using Motor Driven Power Steering System

2020-09-30
2020-01-1536
As the original engine sound is usually not enough to satisfy the driver’s desire for a sporty and fascinating sound, Active Noise Control (ANC) and Active Sound Design (ASD) have been great technologies in automobiles for a long time. However, these technologies which enhance the sound of vehicles using loud speakers or electromagnetic actuators etc. lead to the increase of cost and weight due to the use of external amplifiers or actuators. This paper presents a new technology for generating a target sound by the active control of a permanent magnet synchronous motor (PMSM) of a mass-production steering system. The existing steering hardware or motor is not changed, but only additional software is added. Firstly, an algorithm of this technology, called Active Sound Generation (ASG), is introduced which is compiled and included in the ECU target code. Then the high frequency noise issue and its countermeasures are presented.
Technical Paper

Investigation on the Deformation of Injector Components and Its Influence on the Injection Process

2020-04-14
2020-01-1398
The deformation of injector components cannot be disregarded as the pressure of the system increases. Deformation directly affects the characteristics of needle movement and injection quantity. In this study, structural deformation of the nozzle, the needle and the control plunger under different pressures is calculated by a simulation model. The value of the deformation of injector components is calculated and the maximum deformation location is also determined. Furthermore, the calculated results indicates that the deformation of the control plunger increases the control chamber volume and the cross-section area between the needle and the needle seat. A MATLAB model is established to The influence of structural deformation on needle movement characteristics and injection quantity is investigate by a numerical model. The results show that the characteristic points of needle movement are delayed and injection quantity increases due to the deformation.
Journal Article

Fuzzy-PID Speed Control of Diesel Engine Based on Load Estimation

2015-04-14
2015-01-1627
In order to improve the anti-disturbance performance of engine-load and the effect on speed control for the diesel engine, the paper presents the fuzzy-PID speed control strategy in the architecture of torque-based control. The engine-load estimation algorithm is designed based on the mean-value-model and crankshaft dynamics model, and the estimation precision is validated by engine test in both steady and dynamic conditions. Through the experiment verification of the diesel engine, the fuzzy-PID control strategy based on load estimation can significantly improve the anti-disturbance performance of engine-load in the speed control.
Journal Article

A Semi-Detailed Chemical Kinetic Mechanism of Acetone-Butanol-Ethanol (ABE) and Diesel Blends for Combustion Simulations

2016-04-05
2016-01-0583
With the development of advanced ABE fermentation technology, the volumetric percentage of acetone, butanol and ethanol in the bio-solvents can be precisely controlled. To seek for an optimized volumetric ratio for ABE-diesel blends, the previous work in our team has experimentally investigated and analyzed the combustion features of ABE-diesel blends with different volumetric ratio (A: B: E: 6:3:1; 3:6:1; 0:10:0, vol. %) in a constant volume chamber. It was found that an increased amount of acetone would lead to a significant advancement of combustion phasing whereas butanol would compensate the advancing effect. Both spray dynamic and chemistry reaction dynamic are of great importance in explaining the unique combustion characteristic of ABE-diesel blend. In this study, a semi-detailed chemical mechanism is constructed and used to model ABE-diesel spray combustion in a constant volume chamber.
Technical Paper

A Method of the Improvement of Wireless Power Transfer (WPT) System Efficiency, Compatibility, EMI Reduction, and Foreign Object Detection (FOD) for EV Applications

2020-04-14
2020-01-0530
During the charging Electric Vehicle (EV), power transfer occurs in the power electronics of an EV powertrain. Understanding how the Wireless Power Transfer (WPT) occurs would be beneficial for achieving convenient charging method. This paper focuses on improving WPT system pad compatibility, power transfer efficiency, EMI reduction, and Foreign Object Detection (FOD). The choice of convertible WPT pad for circular and DD type coil, improvement of pad compatibility is analyzed in this paper. In addition, several control methods of increasing WPT system efficiency are proposed. Firstly, the effect of Full Bridge - Half Bridge (FB-HB) is introduced, and the influence of a Bridgeless control scheme is discussed. A new, ferrite pad structure is applied to WPT system in order to achieve EMI reduction. Lastly, a new strategy of Foreign Object Detection (FOD) is suggested for WPT system using phase difference and frequency variation detection.
Journal Article

Numerical Optimization on a Centrifugal Turbocharger Compressor

2008-06-23
2008-01-1697
Performances of a centrifugal turbocharger compressor are investigated and validated in this paper. Based on the validation results, numerical optimizations are performed using ANN and CFD methods. Different impeller geometry with free parameters controlling stacking laws, end-wall, blade sectional camber curves and corresponding performances are used as input layer of ANN in the optimization, while adiabatic total-to-total efficiency and total pressure ratio are used as output layer of the optimization cycle. With this method, the performances of the compressor investigated in this paper are improved notably.
Journal Article

Investigation of Trailer Yaw Motion Control Using Active Front Steer and Differential Brake

2011-04-12
2011-01-0985
This paper presents a control system development for a yaw motion control of a vehicle-trailer combination using the integrated control of active front steer (AFS) and differential brake (DB). A 21 degree of freedom (dof) vehicle-trailer combination model that represents a large SUV and a medium one-axle trailer has been developed for this study. A model reference sliding mode controller (MRSMC) has been developed to generate the desired yaw moment. Based on the understanding of advantages and limitations of AFS and DB, a new integrated control algorithm was proposed. The simulation result shows that integrated control of AFS and DB can restrain the trailer's oscillation effectively and shows less longitudinal speed drop and higher stable margin compared to the DB activated only case while maintaining the yaw stability.
Technical Paper

Real-Time Powertrain Control Strategy for Series-Parallel Hybrid Electric Vehicles

2007-08-05
2007-01-3472
The series-parallel hybrid electric vehicle(HEV), which employs a planetary gear set to combine one internal combustion engine(ICE) and two electric motors(EMs), can take advantages of both series and parallel hybrid system. The efficient powertrain operating point of the system can be obtained by the instantaneous optimization of equivalent fuel consumption. However, heavy computational requirements and variable constraints of the optimization process make it difficult to build real-time control strategy. To overcome the difficulty, this study suggests the control strategy which divides the optimization process into 2 stages. In the first stage, a target of charge/discharge power is determined based on equivalent fuel consumption, then in the second stage, an engine operating point is determined taking power transfer efficiency into account.
Technical Paper

The Characteristics of Carbon Deposit Formation in Piston Top Ring Groove of Gasoline and Diesel Engine

1998-02-23
980526
In order to investigate the characteristics of top ring groove deposit formation in gasoline and diesel engine, engine test and simulation test were performed. From component analysis of used oils sampled from actual running engines, oxidation and nitration for gasoline engine and soot content for diesel engine were selected as main parameters for evaluating oil degradation. In gasoline engine, deposit formation increases linearly with oxidation and nitration, and especially, oil oxidation is a dominant factor on the deposit formation rather than nitration. And, deposit formation increases gradually in low temperature ranges below 260°C even if oils are highly oxidized, but it increases rapidly if piston top ring groove temperature is above 260°C. In diesel engine, deposit formation is highly related to soot content in lubricating oils.
Technical Paper

Studies on Anti-Slip Regulation Technologies for AMT Vehicles

2007-04-16
2007-01-1314
In order to improve the tractive ability, steering capability and directional stability, etc. of automated mechanical transmission (AMT) vehicles running on the wet and slippery road, the anti-slip regulation (ASR) technologies for AMT vehicles are developed. The significance of ASR for AMT vehicles is introduced; a road friction recognition method based on the deceleration of driving wheels is investigated; a fuzzy anti-slip control system based on adjustment of engine torque is developed and the corresponding experimental verification is conducted. The experimental results denote that the proposed method is effective to eliminate the excessive slip when the AMT vehicle travels on the low friction road.
Technical Paper

Research on Control Strategy of Shifting Progress

2008-06-23
2008-01-1684
Based on BF6M1015CP electronic diesel engine (it is a supercharged, water-cooled engine. It has 6 cylinders and it is for heavy-duty vehicle) and HD4070PR electronic automatic transmission (it covers heavy-duty applications requiring high input horsepower and torque. It contains torque converter module, control module, planetary module and output module. It has 7 forward gears and a power-take -off (PTO) and a retarder), the paper analyzes the shift system of an electronic automatic transmission and sets up a mathematic module of the shifting process. With the model the shifting process is analyzed and the model can be used directly in shifting process control, and the rules of shifting process can be derived. To improve the shift quality, in the paper the different control methods in different phases are used and reviewed that Include the open-loop control, fixed ramp rate, and closed-loop control.
Technical Paper

Design and Development of a Real-time Dynamic AMT Test Bench for Simulating Total Road Forces of Vehicle

2008-06-23
2008-01-1682
In this paper the hardware and software of a real-time dynamic test bench for simulating the total road forces of vehicles fitted with Automated Manual Transmissions (AMT) is described. First, the purpose and meaning of this research are discussed. And then, we select the hardware components of the test bench system according to the application requirements and complete the system design. Statement of the structure, working principle and function of the system is also included in this part. According to the experimental procedure of simulating total road load forces of vehicle under real-time conditions on the dynamic test bench, the software system is designed using Visual C++ 6.0, CAN bus communication protocol, RS-232, and network technology. Finally, some experimental tests for the system are carried out with the results that this design corresponds to the real-time dynamic requirements.
Technical Paper

Modal Analysis of an Internal Combustion Engine with Finite Element Method based on Contact Calculation

2008-06-23
2008-01-1583
Contact dynamic characteristics of an internal combustion engine structure were studied by the finite element method and experimental verification. Based on theoretical analysis, contact modal calculation of an internal-combustion engine with finite element method is carried out by the ADINA software. Dynamic behavior of the entire engine structure was investigated. Rigid bar connection and coupling connection were introduced for the purpose of comparison with contact analysis and experiment results. The experimental results are in good agreement with the theoretical analysis and FEM results. From the study, it can be demonstrated that dynamic behavior of the engine structure with a large preload shows linear characteristics. Compared with the other models, the procedure presented in this paper is more effective and useful in view of operational time and experience of analysts.
Technical Paper

Vehicle Drift Investigation during Straight Line Accelerating and Braking

2008-04-14
2008-01-0588
A vehicle drifts due to several reasons from its intended straight path even in the case of no steering input. The multibody dynamic analysis of vehicle drift during accelerating and braking are performed. This paper focuses on modeling and evaluating effects of suspension parameters, differential friction, engine mounting and C.G. location of the vehicle under multibody dynamic simulation environment. Asymmetry of geometry and compliance between left and right side is considered cause of drift. The sensitivities of the suspension parameters are presented for each driving condition. In case of acceleration, the interaction of differential friction and driveshaft stiffness and their influence on drift are also studied. For braking condition, suspension parameters such as initial toe variation of rear coupled torsion beam axle type suspension and kingpin inclination deviation of front suspension are studied including the braking force difference.
Technical Paper

Dynamic Characteristics of Oil Consumption - Relationship Between the Instantaneous Oil Consumption and the Location of Piston Ring Gap

1998-10-19
982442
In order to understand the relationship between the location of piston ring gap and instantaneous change of oil consumption during engine operation, the ring rotation and instantaneous oil consumption were measured simultaneously in a hydrogen fueled single cylinder spark ignition engine. A radioactive-tracer technique was used to measure the rotational movement of piston ring. Two kinds of isotopes(60Co and 192Ir) with different energy level were mounted to the top and 2nd rings to measure each ring's movement independently. The instantaneous oil consumption was obtained by analyzing CO2 concentration in exhaust gas. From the result of ring rotational movement, typical patterns of ring rotation were obtained as follows; Rotational movements are usually initiated by changing the operating conditions. Piston rings tend to rotate easily under low load condition. The rotation speed of ring usually ranged in 0.2∼0.4 rev/min for top ring and 0.5∼0.6 rev/min for 2nd ring.
Technical Paper

Development of an Automatic Climate Control(ACC) Algorithm and the Roof Mounted System for Busses

1998-11-16
982777
Air conditioning is defined as the process of treating air so as to control simultaneously its temperature, humidity, cleanliness and distribution to meet the requirements of the conditioned space. As in the definition, the important actions involved in the operation of an air conditioning system are temperature and humidity control, air purification and movement. For these conditions this paper proposes a Automatic Climate Control(ACC) system of the bus. The system has cooling, heating, and dehumidifying modes, and is governed by dual 8-bit microprocessors. These modes are broken down into sub-modules dealing with control of the compressor, blower speed, damper position, air purifier, ventilators, preheater, air mixing damper and so on.
X