Refine Your Search

Topic

Search Results

Viewing 1 to 11 of 11
Journal Article

Integrated Safety Management System

2009-11-10
2009-01-3171
The Safety Management System requires a structured Risk Management Process to be effective. In the technical fields where numerous potentially catastrophic risks exist, processes and procedures need to account not only for the hardware random failures but also of human errors. The technology has progressed to the point where the predominant safety risks are not so much the machine failures but that of the human interaction. Accidents are rarely the result of a single cause but of a number of latent contributing factors that when combined result in the accident. In the Aerospace industry, the operational risk to the fleet is assessed by the manufacturer and the operator independently and is used in safety and/or regulatory decision-making.
Technical Paper

The Bombardier Flight Test Center - Meeting the Challenge

2000-10-10
2000-01-5502
In 1991, shortly after acquiring Learjet, Bombardier consolidated all flight testing of new aircraft at the Wichita, Kansas facility. Since then, nine new aircraft were certified, and the Flight Test Center grew from 20 dedicated flight test personnel, to nearly 500 dedicated flight test personnel. The Canadian based company in conjunction with several international risk sharing partners, has created a highly dynamic flight test environment, tasking the Flight Test Center with the challenge of bringing a new product to market each year. This rapid growth was centered on supporting three aircraft product lines; Learjet, Canadair, and DeHavilland. New hangars, telemetry, and ground support facilities were built to accommodate the increased flight test demands. The Bombardier Flight Test Center, otherwise known as BFTC, conducts flight test operations on a seven day per week schedule, and in 1999, flew over 5000 flight test hours in development and certification testing.
Journal Article

Aircraft Structure Paint Thickness and Lightning Swept Stroke Damages

2013-09-17
2013-01-2135
During its flight an aircraft can be struck by lightning and the induced high current will require a highly conductive airframe skin structure in order for it to propagate through with minimum damage. However an aircraft skin is generally coated with paint and the airframer does not always have control on the paint thickness. Paint thickness generates heightened concerns for lightning strike on aircraft, mainly because most of coatings dedicated to that purpose are non-conductive. Using insulating material or non-conductive coating with certain thickness may contribute to or increase damage inflicted by the swept stroke lightning energy, even on metallic structures Due to its high relative permittivity, a non-conductive paint or coating on a fuselage skin surface will contribute to slow down the lightning current propagation through structure. With this comes the risk of increasing heat that will favor structural damage and possible melt through.
Journal Article

Preforming of a Fuselage C-Shaped Frame Manufactured by Resin Transfer Molding

2013-09-17
2013-01-2214
The need for efficient manufacturing approaches has emerged with the increasing usage of composites for structural components in commercial aviation. Resin Transfer Molding (RTM), a process where a fiber preform is injected with resin into a closed tool, can achieve high fiber content required for structural components as well as improved dimensional accuracy since all surfaces are controlled by a tool surface. Moreover, RTM is well suited for parts that can be standardized throughout the aircraft, such as a fuselage frames and stringers. The objective of this investigation is to develop a preforming approach for a C-Shaped Fuselage frame. Two approaches are proposed: tri-axial braiding and hand lay-up of Non-Crimp Fabrics. The fiber architecture of the basic materials as well as the complete preforms is explained. The necessary preforming operations are detailed. The quality control measurement of fiber orientation and thickness are presented.
Journal Article

A Novel Approach for Technology Development: A Success Story

2013-09-17
2013-01-2330
The composites development team at Bombardier Aerospace has pushed the Integrated Product Development Team to a new level. The team has been created outside the business priorities and was partially funded by a provincial government initiative to create a greener aircraft. A dedicated R&D team can reduce the gap between the different disciplines by encouraging them to work as one entity and rapidly develop high Technology Readiness Level (TRL) and high Manufacturing Readiness Level (MRL) solutions. Additionally, the interactions between the groups create a harmonization of the development philosophy and a sharing of the building block approach. This leads to a significant cost and lead time reduction in the coupon, element and detail testing. The constitution of the team also has a great impact on the level of expertise and the flexibility to adjust to new demands.
Technical Paper

Considerations on the Use of Hydrophobic, Superhydrophobic or Icephobic Coatings as a Part of the Aircraft Ice Protection System

2013-09-17
2013-01-2108
Ice adhesion on critical aircraft surfaces is a serious potential hazard that runs the risk of causing accidents. For this reason aircraft are equipped with active ice protection systems (AIPS). AIPS increase fuel consumption and add complexity to the aircraft systems. Reducing energy consumption of the AIPS or replacing the AIPS by a Passive Ice Protection System (PIPS), could significantly reduce aircraft fuel consumption. New coatings with superhydrophobic properties have been developed to reduce water adherence to surfaces. Superhydrophobic coatings can also reduce ice adhesion on surfaces and are used as icephobic coatings. The question is whether superhydrophobic or icephobic coatings would be able to reduce the cost associated with AIPS.
Technical Paper

Integrated Reliability and Safety Education Program

2013-09-17
2013-01-2121
The safe operation of technical systems is a mandatory basic requirement for the entire industry. However, there are specific industries where the safety of operation is critical and is considered as a required characteristic. These types of industries include the aerospace, military, civil aviation, nuclear power, as well as chemical and automotive industries. Safety is everyone's responsibility but engineering plays the most important role in the course of achieving a safe product operation. There are two specific phases of the product life cycle where the safety characteristics should be addressed by engineering activities: the design and development and operation phases. Modern engineering education is oriented to provide future engineers with a sufficient background to be able to Conceive-Design-Implement-Operate.
Technical Paper

Aircraft Safety Monitoring and Assessment Practices

2001-09-11
2001-01-2639
Aircraft systems are designed with reliability, safety and cost effectiveness in mind. The certification of the aircraft is based on tests and results of theoretical analyses that show the compliance with the FAR/JAR requirements. Monitoring for safety for in-service aircraft is an important, critical and extremely complex process. The ultimate objective is to assure that the safety level is equal to the original estimate or better. The manufacturer of the aircraft is particularly responsible for overall monitoring and assessment of all safety related events and corrective actions. Many different philosophies were adopted for this purpose. The safety monitoring and audit strategy is generally based on experience, engineering judgment, event analysis and numerical quantification by using probability theory and statistical tools. The aircraft sequential entry in the service and the aging of their components lead to the non-homogeneity of the fleet.
Journal Article

Towards Standardising Methods for Reporting the Embodied Energy Content of Aerospace Products

2017-08-29
2017-01-9002
Within the aerospace industry there is a growing interest in evaluating and reducing the environmental impacts of products and related risks to business. Consequently, requests from governments, customers, manufacturers, and other interested stakeholders, for environmental information about aerospace products are becoming widespread. Presently, requests are inconsistent and this limits the ability of the aerospace industry to meet the informational needs of various stakeholders and reduce the environmental impacts of their products in a cost-effective manner. Energy consumption is a significant business cost, risk, and a simple proxy value for overall environmental impact. This paper presents the initial research carried out by an academic and industry consortium to develop standardised methods for calculating and reporting the embodied manufacturing energy content of aerospace products.
Technical Paper

Development of Low Cost Fuselage Frames by Resin Transfer Molding

2013-09-17
2013-01-2325
This paper presents work on the development of a low cost fuselage C-frame for aircraft primary structure using a Light Resin Transfer Molding (RTM) process. Compared to labor intensive hand layup prepreg technologies, Light RTM offers some substantial advantages by reducing infrastructure requirements such as hydraulic presses or autoclaves. Compared to Prepreg, Light RTM tooling creates two finished surfaces, which is an advantage during installation due to improved dimensional accuracy. The focus of this work was to develop means of achieving high fiber volume fraction structural frames using low cost tooling and a low volume manufacturing strategy. In this case a three piece Light RTM mold was developed using an internal mandrel. To achieve the strength requirements, a combination of crimped and non-crimped fabrics were selected for the reinforcing preform.
Technical Paper

Design of a Human-Powered Aircraft Applying Multidisciplinary Optimization Method

2013-09-17
2013-01-2318
A particular field of aerospace engineering is dedicated to the study of aircraft that are so energetically efficient, that the power produced by a human being enables it to takeoff and maintain sustained flight without any external or stored energy. These aircraft are known as Human-Powered Aircraft (HPA). The objective of the present work is to design a single-seat HPA applying multidisciplinary optimization techniques with an objective function that minimizes both the power required and the stall speed, representing respectively, an easier and safer aircraft to fly. In the first stage, a parametric synthesis model is created to generate random aircraft and assess their aerodynamic(utilizing a 3D vortex lattice method code and a component drag buildup method for the drag polar), stability and control(utilizing static stability criteria), weight (estimated using historical data) and performance (using the thus calculated data) characteristics.
X