Refine Your Search

Topic

Author

Search Results

Technical Paper

Effect of Battery Temperature on Fuel Economy and Battery Aging When Using the Equivalent Consumption Minimization Strategy for Hybrid Electric Vehicles

2020-04-14
2020-01-1188
Battery temperature variations have a strong effect on both battery aging and battery performance. Significant temperature variations will lead to different battery behaviors. This influences the performance of the Hybrid Electric Vehicle (HEV) energy management strategies. This paper investigates how variations in battery temperature will affect Lithium-ion battery aging and fuel economy of a HEV. The investigated energy management strategy used in this paper is the Equivalent Consumption Minimization Strategy (ECMS) which is a well-known energy management strategy for HEVs. The studied vehicle is a Honda Civic Hybrid and the studied battery, a BLS LiFePO4 3.2Volts 100Ah Electric Vehicle battery cell. Vehicle simulations were done with a validated vehicle model using multiple combinations of highway and city drive cycles. The battery temperature variation is studied with regards to outside air temperature.
Journal Article

Functional Requirements to Exceed the 100 kW/l Milestone for High Power Density Automotive Diesel Engines

2017-09-04
2017-24-0072
The paper describes the challenges and results achieved in developing a new high-speed Diesel combustion system capable of exceeding the imaginative threshold of 100 kW/l. High-performance, state-of-art prototype components from automotive diesel technology were provided in order to set-up a single-cylinder research engine demonstrator. Key design parameters were identified in terms boost, engine speed, fuel injection pressure and injector nozzle flow rates. In this regard, an advanced piezo injection system capable of 3000 bar of maximum injection pressure was selected, coupled to a robust base engine featuring ω-shaped combustion bowl and low swirl intake ports. The matching among the above-described elements has been thoroughly examined and experimentally parameterized.
Journal Article

A Study on Monetary Cost Analysis for Product-Line Architectures

2008-04-14
2008-01-0280
We present a cost model that analyzes monetary costs for a product-line architecture to help the optimization of the architecture. The paper illustrates the usefulness of this methodology in a case study based upon the design exploration of a product-line architecture for an active safety system.
Technical Paper

Enhancement of Engineering Education through University Competition-Based Events

2006-11-13
2006-32-0049
Engineering education at the University level is enhanced by competition-based projects. The SAE Clean Snowmobile Challenge is a prime example of how competition-based engineering education benefits the small engines industry and improves the engineering talent pool of the nation in general. For the past several decades, SAE has encouraged young engineers to compete in designing off road vehicles (Baja SAE ®), small race cars (Formula SAE ®), remote control airplanes (Aero Design ®), high mileage vehicles (Supermileage ®) and robots (Walking Robot ®). Now a new competition, the SAE Clean Snowmobile Challenge ™ (CSC), based on designing a cleaner and quieter snowmobile has led to a new path for young engineers to explore the challenges of designing engines that emit less pollution and noise. The paper will summarize the results of the most recent Clean Snowmobile Challenge 2006 and document the successes of the past seven years of the Challenge.
Technical Paper

A Response Surface Based Tool for Evaluating Vehicle Performance in the Pedestrian Leg Impact Test

2008-04-14
2008-01-1244
An interactive tool for predicting the performance of vehicle designs in the pedestrian leg impact test has been developed. This tool allows users to modify the design of a vehicle front structure through the use of a graphical interface, and then evaluates the performance of the design with a response surface. This performance is displayed in the graphical interface, providing the user with nearly instantaneous feedback to his design changes. An example is shown that demonstrates how the tool can be used to help guide the user towards vehicle designs that are likely to improve performance. As part of the development of this tool, a simplified, parametric finite element model of the front structure of the vehicle was created. This vehicle model included eleven parameters that could be adjusted to change the structural dimensions and structural behavior of the model.
Technical Paper

Wood-to-Wheels: A Multidisciplinary Research Initiative in Sustainable Transportation Utilizing Fuels and Co-Products from Forest Resources

2008-10-20
2008-21-0026
Michigan Technological University has established a broad-based university-wide research initiative, termed Wood-to-Wheels (W2W), to develop and evaluate improved technologies for growing, harvesting, converting, and using woody biomass in renewable transportation fuel applications. The W2W program bridges the entire biomass development-production-consumption life cycle with research in areas including forest resources, bioprocessing, engine/vehicle systems, and sustainable decisions. The W2W chain establishes a closed cycle of carbon between the atmosphere, woody biomass, fuels, and vehicular systems that can reduce the accumulation of CO2 in the atmosphere. This paper will summarize the activities associated with the Wood-to-Wheels initiative and describe challenges and the potential benefits that are achievable.
Technical Paper

Industry and Academic Relations - Engineering Education and the Future of the Engineering Workforce

2010-10-19
2010-01-2300
With the current increase in concern and awareness regarding sustainability and energy, a new focus has been placed on the field of engineering. In this realm of focus, how to educate engineers, more specifically how to continually educate engineers to keep up with technology and the changing workforce has become a very important topic of interest. There exists a gap between graduate studies and professional implementation of technology which the Energy Systems Engineering [ESE] program currently in deployment and development between the University of Michigan and General Motors seeks to address. This work outlines current efforts in encouraging new engineers to enter the field, but focuses primarily on continuing and re-educating the workforce to meet the needs of new technologies. Examples of academic-industry cooperation will be discussed, with some focus on the benefit and experience of the student.
Technical Paper

Brake Response Time Measurement for a HIL Vehicle Dynamics Simulator

2010-04-12
2010-01-0079
Vehicle dynamics simulation with Hardware In the Loop (HIL) has been demonstrated to reduce development and validation time for dynamic control systems. For dynamic control systems such as Anti-lock Braking System (ABS) and Electronic Stability Control (ESC), an accurate vehicle dynamics performance simulation system requires the Electronic Brake Control Module (EBCM) coupled with the vehicles brake system hardware. This kind of HIL simulation-specific software tool can further increase efficiency by means of automation and optimization of the development and validation process. This paper presents a method for HIL vehicle dynamics simulator optimization through Brake Response Time (BRT) correlation. The paper discusses the differences between the physical vehicle and the HIL vehicle dynamics simulator. The differences between the physical and virtual systems are used as factors in the development of a Design Of Experiment (DOE) quantifying HIL simulator performance.
Technical Paper

Powersplit Hybrid Electric Vehicle Control with Electronic Throttle Control (ETC)

2003-10-27
2003-01-3280
This paper analyzes the control of the series-parallel powersplit used in the 2001 Michigan Tech FutureTruck. An electronic throttle controller is implemented and a new control algorithm is proposed and tested. A vehicle simulation has been created in MATLAB and the control algorithm implemented within the simulation. A program written in C has also been created that implements the control algorithm in the test vehicle. The results from both the simulation and test vehicle are presented and discussed and show a 15% increase in fuel economy. With the increase in fuel economy, and through the use of the original exhaust after treatment, lower emissions are also expected.
Technical Paper

Control Strategies for a Series-Parallel Hybrid Electric Vehicle

2001-03-05
2001-01-1354
Living in the era of rising environmental sensibility and increasing gasoline prices, the development of a new environmentally friendly generation of vehicles becomes a necessity. Hybrid electric vehicles are one means of increasing propulsion system efficiency and decreasing pollutant emissions. In this paper, the series-parallel power-split configuration for Michigan Technological University's FutureTruck is analyzed. Mathematical equations that describe the hybrid power-split transmission are derived. The vehicle's differential equations of motion are developed and the system's need for a controller is shown. The engine's brake power and brake specific fuel consumption, as a function of its speed and throttle position, are experimentally determined. A control strategy is proposed to achieve fuel efficient engine operation. The developed control strategy has been implemented in a vehicle simulation and in the test vehicle.
Technical Paper

Modeling of Human Response From Vehicle Performance Characteristics Using Artificial Neural Networks

2002-05-07
2002-01-1570
This study investigates a methodology in which the general public's subjective interpretation of vehicle handling and performance can be predicted. Several vehicle handling measurements were acquired, and associated metrics calculated, in a controlled setting. Human evaluators were then asked to drive and evaluate each vehicle in a winter driving school setting. Using the acquired data, multiple linear regression and artificial neural network (ANN) techniques were used to create and refine mathematical models of human subjective responses. It is shown that artificial neural networks, which have been trained with the sets of objective and subjective data, are both more accurate and more robust than multiple linear regression models created from the same data.
Technical Paper

Hybrid Electric Vehicle Battery Aging Estimation and Economic Analysis based on Equivalent Consumption Minimization Strategy

2017-03-28
2017-01-1251
This paper presents results on how the Equivalent Consumption Minimization Strategy (ECMS) penalty factor effects Lithium ion battery aging. The vehicle studied is the Honda Civic Hybrid. The battery used is A123 Systems’. Vehicle simulation using multiple combinations of highway and city drive cycles. For each combination of drive cycles, six ECMS penalty factor values are used. Battery aging is evaluated using a semi-empirical model combined with accumulated Ah-throughput method which uses, as an input, the battery state of charge trajectory from the vehicle simulations. The tradeoff between fuel cost and battery aging cost is explicitly displayed. In addition, the results provide insight into how driving behavior affects battery aging. The paper concludes with a discussion of the optimal balance between fuel cost and battery aging.
Technical Paper

Innovation Flow and Metrics Essentials

2011-10-04
2011-36-0147
The innovation term has been so widely misused that the confusion observed among the companies trying to get themselves into the innovation realm is a common and natural consequence. The lack of understanding of the innovation dynamics, flow and metrics generally culminate in a non-well-thought implementation of innovation processes and policies that are usually tragic in the short term. The most common consequences are the loss of credibility of the innovation process in general among leaders and employees, and the loss of credibility of the company as an innovative company among suppliers, partners and customers, causing these companies to abandon this powerful tool and, as consequence, to limit their capabilities to compete in the future. In order to prevent this from happening, companies that were not built upon innovation will need to grow capability and change cultural priorities to match the demands of the innovation process.
Technical Paper

An Approach of the Engine Cylinder Block Material

2013-10-07
2013-36-0113
The increasing demand for energy savings in cars of high production volume, especially those classified as emerging market vehicles, has led the automotive industry to focus on several strategies to achieve higher efficiency levels from their systems and components. One of the most diffuse initiatives is reducing weight through the application of the so-called light alloys. An engine cylinder block can contribute nearly two percent of the vehicle's total mass. Special attention and soon repercussion are given when someone decides to apply a light alloy such as the aluminum to this component. Nonetheless, it is known that peculiarities in terms of physical, chemical and mechanical properties, due to the material nature, associated with regional market characteristics make the initial feasibility analysis study definitely one of the most important stages for the material choice decision.
Technical Paper

Windowed Selected Moving Autocorrelation (WSMA), Tri-Correlation (TriC), and Misfire Detection

2005-04-11
2005-01-0647
In this paper, two correlations, Windowed Selected Moving Autocorrelation (WSMA) and Tri-Correlation (TriC), are introduced and discussed. The WSMA is simpler than the conventional autocorrelation. WSMA uses less data points to obtain useful signal content at desired frequencies. The computational requirement is therefore reduced compared to the conventional autocorrelation. The simplified TriC provides improved signal to noise separation capability than WSMA does while still requiring reduced computational effort compared to the standard autocorrelation. Very often, computation resource limitation exists for real-time applications. Therefore, the WSMA and TriC offer more opportunities for real-time monitor and feedback control applications in the frequency domain due to their high efficiencies. As an example, applications in internal combustion (IC) engine misfire detection are presented. Simulation and vehicle test results are also presented in this paper.
Technical Paper

Influence of the Nozzle Geometry of a Diesel Single-Hole Injector on Liquid and Vapor Phase Distributions at Engine-Like Conditions

2013-09-08
2013-24-0038
The paper describes an experimental activity on the spatial and temporal liquid- and vapor-phase distributions of diesel fuel at engine-like conditions. The influence of the k-factor (0 and 1.5) of a single-hole axial-disposed injector (0.100 mm diameter and 10 L/d ratio) has been studied by spraying fuel in an optically-accessible constant-volume combustion vessel. A high-speed imaging system, capable of acquiring Mie-scattering and Schlieren images in a near simultaneous fashion mode along the same line of sight, has been developed at the Michigan Technological University using a high-speed camera and a pulsed-wave LED system. The time resolved pair of schlieren and Mie-scattering images identifies the instantaneous position of both the vapor and liquid phases of the fuel spray, respectively. The studies have been performed at three injection pressures (70, 120 and 180 MPa), 23.9 kg/m3 ambient gas density and 900 K gas temperature in the vessel.
Technical Paper

Effect of State of Charge Constraints on Fuel Economy and Battery Aging when Using the Equivalent Consumption Minimization Strategy

2018-04-03
2018-01-1002
Battery State of Charge (SOC) constraints are used to prevent the battery in Hybrid Electric Vehicles (HEVs) from over-charging or over-discharging. These constraints strongly influence the power-split of the HEV. This paper presents results on how Battery State of Charge (SOC) constraints effects Lithium ion battery aging and fuel economy when using the Equivalent Consumption Minimization Strategy (ECMS). The vehicle studied is the Honda Civic Hybrid. The battery used is A123 Systems’ ANR26650 battery cell. Vehicle simulation uses multiple combinations of highway and city drive cycles. For each combination of drive cycles, nine SOC constraints ranges are used. Battery aging is evaluated using a semi-empirical model combined with the accumulated Ah-throughput method which uses, as an input, the battery SOC trajectory from the vehicle simulations. The simulation results provide insight into how SOC constraints effect fuel economy as well as battery aging.
Technical Paper

Field Test Experience of a Combined DPF and Urea-SCR System Achieving EPA'07 Emission Levels

2005-11-01
2005-01-3575
On-road emission measurements of 23 VN-trucks on a randomly chosen driving cycle, consisting of 10 miles two-lane and 8 miles four-lane road, showed tailpipe NOx emissions on fleet average of 0.96 g/bhp-hr, or 1.06 g/bhp-hr when including the time the exhaust gas temperature was below 200°C. Complementary measurements in a SET-cycle (13 point OICA -cycle) on a chassis dynamometer showed a tailpipe emission of 0.008 g PM per bhp-hr. Moreover, cost analysis show that the diesel fuel consumption remains unchanged whether the truck running on ULSD is equipped with a Combined Exhaust gas AfterTreatment System (CEATS) installed or not.
Technical Paper

Solutions to the Clean Snowmobile Challenge - What Works?

2005-10-24
2005-01-3681
The Society of Automotive Engineers' (SAE) Clean Snowmobile Challenge 2004 (CSC 2004) was held at Michigan Technological University in Houghton, Michigan, from March 15 - 20, 2004. The Clean Snowmobile Challenge has been a competition in the SAE Collegiate Design Series since 2000, and began in Jackson Hole, Wyoming, as a response to rising concerns about snowmobiling in environmentally-sensitive areas. Teams from fifteen universities competed in CSC 2004. The winning snowmobile (sled) was developed by the University of Wisconsin, Madison, and featured a four-stroke engine with electronic fuel injection (EFI), a two-stage tuned muffler, and catalytic exhaust aftertreatment. A hybrid-electric design was used to increase the snowmobile's powertrain output and improve acceleration. [8] Teams should be competitive in all events to gain enough points to win the competition.
Journal Article

Unstructured with a Point: Validation and Robustness Evaluation of Point-Cloud Based Path Planning

2021-04-06
2021-01-0251
Robust autonomous navigation in unstructured environments is an unsolved problem and critical to the operation of autonomous military and rescue ground vehicles. Two-dimensional path planners operating on occupancy grids or costs maps can produce infeasible paths when the operational area includes complex terrain. Recently, sample-based path planners that plan on LiDAR-acquired point-cloud maps have been proposed. These approaches require no discretization of the operational area and provide direct pose estimation by modeling vehicle and terrain interaction. In this paper, we show that direct sample-based path planning on point clouds is effective and robust in unstructured environments. Robustness is demonstrated by completing a system parameter sensitivity analysis of the system in an Unreal simulation environment and partnered with field validation.
X