Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Coupled Tabulated Kinetics and Flame Propagation Model for the Simulation of Fumigated Medium Speed Dual-Fuel Engines

2019-09-09
2019-24-0098
The present work describes the numerical modeling of medium-speed marine engines, operating in a fumigated dual-fuel mode, i.e. with the second fuel injected in the ports. This engine technology allows reducing engine-out emissions while maintaining the engine efficiency and can be fairly easily retrofitted from current diesel engines. The main premixed fuel that is added can be a low-carbon one and can additionally be of a renewable nature, thereby reducing or even completely removing the global warming impact. To fully optimize the operational parameters of such a large marine engine, computational fluid dynamics can be very helpful. Accurately describing the combustion process in such an engine is key, as the prediction of the heat release and the pollutant formation is crucial. Auto-ignition of the diesel fuel needs to be captured, followed by the combustion and flame propagation of the premixed fuel.
Technical Paper

Evaluation of Wall Heat Flux Models for Full Cycle CFD Simulation of Internal Combustion Engines under Motoring Operation

2017-09-04
2017-24-0032
The present work details a study of the heat flux through the walls of an internal combustion engine. The determination of this heat flux is an important aspect in engine optimization, as it influences the power, efficiency and the emissions of the engine. Therefore, a set of simulation tools in the OpenFOAM® software has been developed, that allows the calculation of the heat transfer through engine walls for ICEs. Normal practice in these types of engine simulations is to apply a wall function model to calculate the heat flux, rather than resolving the complete thermo-viscous boundary layer, and perform simulations of the closed engine cycle. When dealing with a complex engine, this methodology will reduce the overall computational cost. It however increases the need to rely on assumptions on both the initial flow field and the behavior in the near-wall region.
X