Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

An Experimental Study of the Combustion, Performance and Emission Characteristics of a CI Engine under Diesel-1-Butanol/CNG Dual Fuel Operation Mode

2016-04-05
2016-01-0788
In order to comply with the stringent emission regulations, many researchers have been focusing on diesel-compressed natural gas (CNG) dual fuel operation in compression ignition (CI) engines. The diesel-CNG dual fuel operation mode has the potential to reduce both the soot and NOx emissions; however, the thermal efficiency is generally lower than that of the pure diesel operation, especially under the low and medium load conditions. The current experimental work investigates the potential of using diesel-1-butanol blends as the pilot fuel to improve the engine performance and emissions. Fuel blends of B0 (pure diesel), B10 (90% diesel and 10% 1-butanol by volume) and B20 (80% diesel and 20% 1-butanol) with 70% CNG substitution were compared based on an equivalent input energy at an engine speed of 1200 RPM. The results indicated that the diesel-1-butanol pilot fuel can lead to a more homogeneous mixture due to the longer ignition delay.
Technical Paper

Experimental Investigation and Analysis of Combustion Process in a Diesel Engine Fueled with Acetone-Butanol-Ethanol/ Diesel Blends

2016-04-05
2016-01-0737
The performance and emission of an AVL 5402 single-cylinder engine fueled with acetone-butanol-ethanol (ABE) / diesel blends were experimentally investigated at various load conditions and injection timings. The fuels tested in the experiments were ABE10 (10% ABE, 90% diesel), ABE20 and diesel as baseline. Thermodynamics analyses of pressure traces acquired in experiments were performed to show the impact of ABE concentration to the overall combustion characteristics of the fuel mixtures. Cumulative heat release analysis showed that ABE mixtures generally retarded the overall combustion phasing, ignition delays of ABE-containing fuels were significantly extended, however, combustion rate during CA10∼CA50 were accelerated at different extent. Pressure rise rate of ABE-containing fuels further implicated that the premixed combustion were more dominant than that of diesel. Polytropic indices of both expansion and compression strokes were calculated from p-V diagram.
Technical Paper

Combustion and Emissions Performance of a Spark Ignition Engine Fueled with Water Containing Acetone-Butanol-Ethanol and Gasoline Blends

2015-04-14
2015-01-0908
Butanol has proved to be a very promising alternative fuel in recent years. The production of bio-butanol, typically done using the acetone-butanol-ethanol (ABE) fermentation process is expensive and consumes a lot of energy. Hence it is of interest to study the intermediate fermentation product, i.e. water-containing ABE as a potential fuel. The combustion and emissions performance of ABE29.5W0.5 (29.5 vol.% ABE, 0.5 vol.% water and gasoline blend), ABE30 (30 vol.% ABE and gasoline blend) and ABE0 (pure gasoline) were investigated in this study. The results showed that ABE29.5W0.5 enhanced engine torque by 9.6%-12.7% and brake thermal efficiency (BTE) by 5.2%-11.6% compared to pure gasoline, respectively. ABE29.5W0.5 also showed similar brake specific fuel consumption (BSFC) relative to pure gasoline.
Technical Paper

Investigating the Impact of Acetone on the Performance and Emissions of Acetone-Butanol-Ethanol (ABE) and Gasoline Blends in an SI Engine

2015-04-14
2015-01-0909
Alcohols, especially n-butanol, have received a lot of attention as potential fuels and have shown to be a possible alternative to pure gasoline. The main issue preventing butanol's use in modern engines is its relatively high cost of production. ABE, the intermediate product in the ABE fermentation process for producing bio-butanol, is being studied as an alternative fuel because it not only preserves the advantages of oxygenated fuels, but also lowers the cost of fuel recovery for individual component during fermentation. With the development of advanced ABE fermentation technology, the volumetric percentage of acetone, butanol and ethanol in the bio-solvents can be precisely controlled. In this respect, it is desirable to estimate the performance of different ABE blends to determine the best blend and optimize the production process accordingly.
Technical Paper

Experimental Study on Performance and Emission of Acetone-Ethanol and Gasoline Blends in a PFI Spark Ignition Engine

2016-04-05
2016-01-0833
To face the challenges of fossil fuel shortage and air pollution problems, there is growing interest in the potential usage of alternative fuels such as bio-ethanol and bio-butanol in internal combustion engines. The literature shows that the acetone in the Acetone-Butanol-Ethanol (ABE) blends plays an important part in improving the combustion performance and emissions, owing to its higher volatility. In order to study the effects of acetone addition into commercial gasoline, this study focuses on the differences in combustion, performance and emission characteristics of a port-injection spark-ignition engine fueled with pure gasoline (G100), ethanol-containing gasoline (E30) and acetone-ethanol-gasoline blends (AE30 at A:E volumetric ratio of 3:1). The tests were conducted at 1200RPM with the default calibration (for gasoline), at 3 bar and 5 bar BMEP under various equivalence ratios.
X