Refine Your Search

Search Results

Viewing 1 to 16 of 16
Journal Article

Comparative Studies between CFD and Wind Tunnel Measurements of Cooling Performance and External Aerodynamics for a Heavy Truck

2014-09-30
2014-01-2443
Nowadays, much focus for vehicle manufacturers is directed towards improving the energy efficiency of their products. The aerodynamic drag constitutes one major part of the total driving resistance for a vehicle travelling at higher speeds. In fact, above approximately 80km/h the aerodynamic drag is the dominating resistance acting on a truck. Hence the importance of reducing this resistance is apparent. Cooling drag is one part of the total aerodynamic drag, which arises from air flowing through the heat exchangers, and the irregular under-hood area. When using Computational Fluid Dynamics (CFD) in the development process it is of great importance to ensure that the methods used are accurately capturing the physics of the flow. This paper deals with comparative studies between CFD and wind-tunnel tests. In this paper, two comparative studies are presented.
Journal Article

Force Based Measurement Method for Cooling Flow Quantification

2017-03-28
2017-01-1520
Quantification of heat exchanger performance in its operative environment is in many engineering applications an essential task, and the air flow rate through the heat exchanger core is an important optimizing parameter. This paper explores an alternative method for quantifying the air flow rate through compact heat exchangers positioned in the underhood of a passenger car. Unlike conventional methods, typically relying on measurements of direct flow characteristics at discrete probe locations, the proposed method is based on the use of load-cells for direct measurement of the total force acting on the heat exchanger. The air flow rate is then calculated from the force measurement. A direct comparison with a conventional pressure based method is presented as both methods are applied on a passenger car’s radiator tested in a full scale wind tunnel using six different grill configurations. The measured air flow rates are presented and discussed over a wide range of test velocities.
Journal Article

Experimental and Numerical Investigation of Wheel Housing Aerodynamics on Heavy Trucks

2012-04-16
2012-01-0106
Wheel and underbody aerodynamics have become important topics in the search to reduce the aerodynamic drag of the heavy trucks. This study aims to investigate, experimentally as well as numerically, the local flow field around the wheels and in the wheel housing on a heavy truck; and how different approaches to modelling the wheel rotation in CFD influences the results. Emphasis is on effects due to ground simulation, and both moving ground and wheel rotation were requirements for this study. A 1:4-scale model of part of a heavy truck geometry has been developed. During the model design numerical simulations were used to optimise the shape, in order to replicate the flow field near the wheel of a complete truck. This was done by changing the flow angles of the incoming and exiting flows, and by keeping the mass flow rates in to, and out of, the wheel housing at the same ratios as in a reference full size vehicle.
Journal Article

Aerodynamic Investigation of Gap Treatment- and Chassis Skirts Strategies for a Novel Long-Haul Vehicle Combination

2012-09-24
2012-01-2044
Constantly lowering emissions legislation and the fact that fuel prices have increased tremendously over recent years, have forced vehicle manufacturers to develop more and more energy-efficient vehicles. The aerodynamic drag is responsible for a substantial part of the total driving resistance for a vehicle, especially at higher velocities; thus it is important to reduce this factor as much as possible for vehicles commonly operating in these conditions. In an attempt to improve transport efficiency, longer vehicle combinations are becoming more common. By replacing some of the shorter vehicle combinations with longer combinations, the same amount of cargo can be transported with fewer vehicles; hence there is large potential for fuel savings. The knowledge of the aerodynamic properties of such vehicles is somewhat limited, and therefore interesting to study.
Journal Article

Investigation of Wheel Ventilation-Drag using a Modular Wheel Design Concept

2013-04-08
2013-01-0953
Passenger car fuel consumption is a constant concern for automotive companies and the contribution to fuel consumption from aerodynamics is well known. Several studies have been published on the aerodynamics of wheels. One area of wheel aerodynamics discussed in some of these earlier works is the so-called ventilation resistance. This study investigates ventilation resistance on a number of 17 inch rims, in the Volvo Cars Aerodynamic Wind Tunnel. The ventilation resistance was measured using a custom-built suspension with a tractive force measurement system installed in the Wheel Drive Units (WDUs). The study aims at identifying wheel design factors that have significant effect on the ventilation resistance for the investigated wheel size. The results show that it was possible to measure similar power requirements to rotate the wheels as was found in previous works.
Journal Article

Aerodynamic Effects of Different Tire Models on a Sedan Type Passenger Car

2012-04-16
2012-01-0169
Targets for reducing emissions and improving energy efficiency present the automotive industry with many challenges. Passenger cars are by far the most common means of personal transport in the developed part of the world, and energy consumption related to personal transportation is predicted to increase significantly in the coming decades. Improved aerodynamic performance of passenger cars will be one of many important areas which will occupy engineers and researchers for the foreseeable future. The significance of wheels and wheel housings is well known today, but the relative importance of the different components has still not been fully investigated. A number of investigations highlighting the importance of proper ground simulation have been published, and recently a number of studies on improved aerodynamic design of the wheel have been presented as well. This study is an investigation of aerodynamic influences of different tires.
Technical Paper

A Wind Tunnel Study Correlating the Aerodynamic Effect of Cooling Flows for Full and Reduced Scale Models of a Passenger Car

2010-04-12
2010-01-0759
In the early stages of an aerodynamic development programme of a road vehicle it is common to use wind tunnel scale models. The obvious reasons for using scale models are that they are less costly to build and model scale wind tunnels are relatively inexpensive to operate. It is therefore desirable for model scale testing to be utilized even more than it is today. This however, requires that the scale models are highly detailed and that the results correlate with those of the full size vehicle. This paper presents a correlation study that was carried out in the Chalmers and Volvo Car Aerodynamic Wind Tunnels. The aim of the study was to investigate how successfully a correlation of the cooling air flow between a detailed scale model and a real full size vehicle could be achieved. Results show limited correlation on absolute global aerodynamic loads, but relative good correlation in drag and lift increments.
Technical Paper

Effects of Ground Simulation on the Aerodynamic Coefficients of a Production Car in Yaw Conditions

2010-04-12
2010-01-0755
Automotive wind tunnel testing is a key element in the development of the aerodynamics of road vehicles. Continuous advancements are made in order to decrease the differences between actual on-road conditions and wind tunnel test properties and the importance of ground simulation with relative motion of the ground and rotating wheels has been the topic of several studies. This work presents a study on the effect of active ground simulation, using moving ground and rotating wheels, on the aerodynamic coefficients on a passenger car in yawed conditions. Most of the published studies on the effects of ground simulation cover only zero yaw conditions and only a few earlier investigations covering ground simulation during yaw were found in the existing literature and all considered simplified models. To further investigate this, a study on a full size sedan type vehicle of production status was performed in the Volvo Aerodynamic Wind Tunnel.
Technical Paper

Influence of Different Truck and Trailer Combinations on the Aerodynamic Drag

2011-04-12
2011-01-0179
The aim with this investigation was to study the aerodynamic properties of truck-trailer combinations of varying lengths. The aerodynamic properties of the combinations were evaluated in order to study similarities and differences in the flow field between different configurations. By the use of Computational Fluid Dynamics (CFD) six different types of truck-trailer combinations used for long hauling have been evaluated. The combinations have a total length varying between 10.10 m and 25.25 m and consist of either a tractor or rigid truck in combination with one or two cargo units. All of the combinations are commonly found on roads in Sweden and several other countries in Europe. The results from the simulations show that the aerodynamic properties differ significantly for the truck-trailer combinations. It was found that the longer vehicle combinations are much more sensitive to yaw conditions than the shorter combinations.
Technical Paper

Exploration and Improvement of Road Vehicle Aerodynamics using LES

2011-04-12
2011-01-0176
The paper discusses an appropriate usage of large eddy simulation (LES) in external vehicle aerodynamics. Three different applications, wheelhouse flow, gusty flow and active flow control, are used to demonstrate how LES can be used to obtain new knowledge about vehicle flows. The three examples illustrate the information that can be extracted using LES in vehicle aerodynamics and show the potential of LES in explorations of this complex flow.
Technical Paper

On the Possibilities and Limitations of Wind Noise Testing in the Aerodynamical Wind Tunnel at Volvo Cars

2016-06-15
2016-01-1807
This paper presents an experimental study of aeroacoustical sound sources generated by the turbulent flow around the side mirror of a Volvo V70. Measurements were carried out at the Volvo Cars aerodynamical wind tunnel (PVT) and at the aeroacoustical wind tunnel of Stuttgart University (FKFS). Several different measurement techniques were applied in both tunnels and the results were compared to each other. The configurations considered here were: side mirror with a cord and without the cord. The results discussed in this paper include intensity probe measurements in the flow around the side mirror, sound source localization with beamforming technique using a three-dimensional spherical array as well as standard measurements inside the car with an artificial head. This experimental study focused on understanding the differences between testing at the PVT and FKFS.
Technical Paper

Validation of the VSB2 Spray Model for Ethanol under Diesel like Conditions

2017-10-08
2017-01-2193
When developing new combustion concepts, CFD simulations is a powerful tool. The modeling of spray formation is a challenging but important part when it comes to CFD modelling of non-premixed combustion. There is a large difference in the accuracy and robustness among different spray models and their implementation in different CFD codes. In the work presented in this paper a spray model, designated as VSB2 has been implemented in OpenFOAM. VSB2 differ from traditional spray models by replacing the Lagrangian parcels with stochastic blobs. The stochastic blobs consists of a droplet size distribution rather than equal sized droplets, as is the case with the traditional parcel. The VSB2 model has previously been thoroughly validated for spray formation and combustion of n-heptane. The aim of this study was to validate the VSB2 spray model for ethanol spray formation and combustion as a step in modelling dual-fuel combustion with alcohol and diesel.
Technical Paper

A Comprehensive Numerical Study of Diesel Fuel Spray Formation with OpenFOAM

2011-04-12
2011-01-0842
The accuracy and robustness of spray models and their implementation in current commercial CFD codes vary substantially. However, common features are that the resulting spray penetration and levels of spray-generated turbulence - two factors that strongly influence the rate of heat released during combustion - are to a great extent grid size-dependent. In the work presented here a new kind of spray model has been implemented and thoroughly tested, under various ambient conditions, in the open source code OpenFOAM. In addition, since the turbulence model applied in simulations is known to strongly affect spray penetration rates, results obtained using both the standard k-ε and RNG k-ε models have been compared. In the new spray model, designated VSB2, the traditional Lagrangian parcel has been replaced by a so-called stochastic blob containing droplets with a distribution of sizes, rather than a number of uniform-sized droplets.
Technical Paper

Aerodynamic Effects of Roof Deflector and Cab Side Extenders for Truck-Trailer Combinations

2011-09-13
2011-01-2284
Today there are a large variety of drag-reducing devices for heavy trucks that are commonly used, for example, roof deflectors, cab side extenders and chassis fairings. These devices are often proven to be efficient, reducing the total aerodynamic resistance for the vehicle. However, the drag-reducing devices are usually identical for a specific pulling vehicle, independent of the layout of the vehicle combination. In this study, three vehicle combinations were analyzed. The total length of the vehicles varied between 10.10 m and 25.25 m. The combinations consisted of a rigid truck in combination with one or two cargo units. The size of the gap between the cargo units differed between the vehicle combinations. There were also three configurations of each vehicle combination with different combinations of roof deflector and cab side extenders, yielding a total number of nine configurations.
Technical Paper

CFD Method and Simulations on a Section of a Detailed Multi-Louvered Fin Where the Incoming Air is Directed at 90° and 30° Relative to the Compact Heat-Exchanger

2013-09-24
2013-01-2417
This paper presents results and a Computational Fluid Dynamics (CFD) method for simulation of a detailed louvered fin for a multi-louvered compact heat-exchanger. The airflow was angled at 90°, +30° and −30° relative to the heat-exchanger to evaluate changes in static pressure drop and airflow characteristics. The investigation was based on three heat-exchangers with thicknesses of 52mm and two of 19mm. One period of a detailed louvered fin was simulated for two airflows for each heat-exchanger. The pressure drop data was thereafter compared to experimental data from a full-size heat-exchanger. From the pressure drop and the airflow characteristic results recommendations were made that those kinds of simulations could be defined as steady state, and with the kω-SST turbulence model. For the same heat-exchanger angle the airflow within the core was similar, with a turbulent characteristic behind it.
Technical Paper

Calibration Procedure for Measurement-Based Fast Running Model for Hardware-in-the-Loop Powertrain Systems

2020-04-14
2020-01-0254
The requirements set for the next-generation powertrain systems (e.g. performance and emissions) are becoming increasingly stringent with ever-shortening time-to-markets at reduced costs. To remain competitive automotive companies are progressively relying on model-driven development and virtual testing. Virtual test benches, such as HiL (Hardware-in the-Loop) simulators, are powerful tools to reduce the amount of physical testing and speed up engine software calibration process. The introduction of these technologies places new, often conflicting demands (such as higher predictability, faster simulation speed, and reduced calibration effort) upon simulation models used at HiL test benches. The new models are also expected to offer compliance to industry standards, performance and usability to further increase the usage of virtual tests in powertrain development.
X