Refine Your Search

Topic

Author

Search Results

Technical Paper

Reduction of Soot Emissions from a Direct Injection Diesel Engine using Water-in-Diesel Emulsion and Microemulsion Fuels

2007-04-16
2007-01-1076
The emissions from a direct injection diesel engine measured according to the ECE R49 13-mode cycle and as a function of exhaust gas recirculation are compared for diesel fuel without water addition, and for water-in-diesel as emulsion and microemulsion. The effect of water addition on the soot emissions was remarkably strong for both the emulsion and microemulsion fuels. The average weighted soot emission values for the 13-mode cycle were 0.0024 and 0.0023 g/kWh for the two most interesting emulsion and microemulsion fuels tested, respectively; 5-fold lower than the US 2007 emission limit.
Technical Paper

Application of Transient Temperature vs. Equivalence Ratio Emission Maps to Engine Simulations

2007-04-16
2007-01-1086
In order to acquire knowledge about temperature vs. equivalence ratio, T-ϕ, conditions in which emissions are formed and destroyed, T-ϕ parametric maps were constructed for: 1 Soot and soot precursors (C2H2) 2 Nitrogen oxides (NO and NO2) 3 Unburnt intermediates (CH2O, H2 and CO) 4 Important radicals (HO2 and OH) Each map was obtained by plotting data from a large number of simulations for various T-ϕ combinations in a zero-dimensional, 0D, closed Perfectly Stirred Reactor, PSR. Initially, the influences of elapsed reaction time, pressure and EGR level were examined, varying one parameter at a time. Then, since both the elapsed time and pressure change in an engine cycle, the maps were constructed according to engine pressure traces obtained from Computational Fluid Dynamics, CFD, simulations. Since the pressure is changing in elapsed time intervals the maps are called transient.
Technical Paper

Performance of a Heavy Duty DME Engine - the Influence of Nozzle Parameters on Combustion and Spray Development

2009-04-20
2009-01-0841
DME was tested in a heavy duty diesel engine and in an optically accessible high-temperature and pressure spray chamber in order to investigate and understand the effect of nozzle parameters on emissions, combustion and fuel spray concentration. The engine study clearly showed that smaller nozzle orifices were advantageous from combustion, efficiency and emissions considerations. Heat release analysis and fuel concentration images indicate that smaller orifices result in higher mixing rate between fuel and air due to reductions in the turbulence length scale, which reduce both the magnitude of fuel-rich regions and the steepness of fuel gradients in the spray, which enable more fuel to burn and thereby shorten the combustion duration.
Technical Paper

An Experimental Investigation of Spray-Wall Interaction of Diesel Sprays

2009-04-20
2009-01-0842
Wall wetting can occur irrespective of combustion concept in diesel engines, e.g. during the compression stroke. This action has been related to engine-out emissions in different ways, and an experimental investigation of impinging diesel sprays is thus made for a standard diesel fuel and a two-component model fuel (IDEA). The experiment was performed at conditions corresponding to those found during the compression stroke in a heavy duty diesel engine. The spray characteristics of two fuels were measured using two different optical methods: a Phase Doppler Particle Analyzer (PDPA) and high-speed imaging. A temperature controlled wall equipped with rapid, coaxial thermocouples was used to record the change in surface temperature from the heat transfer of the impinging sprays.
Journal Article

Modeling of Combustion and Emissions Formation in Heavy Duty Diesel Engine Fueled by RME and Diesel Oil

2009-09-13
2009-24-0014
A comparative study on engine performance and emissions (NOx, soot) formation has been carried out for the Volvo D12C diesel engine fueled by Rapeseed Methyl Ester, RME and conventional diesel oil. The fuel and combustion models used in this paper are the modifications of those described in [1–3]. The numerical results for different load cases illustrate that for both fuels nearly 100% combustion efficiency was predicted; in the case of RME, the cumulative heat release was compared with the RME LHV, 37.2 kJ/g. To minimize soot and NOx emissions, 25–30% EGR levels depending on the engine loads and different injection timings were analyses. To illustrate the optimal engine performance conditions, a special technique based on the time-transient parametric ϕ-T maps [4] has been used.
Technical Paper

Experimental Investigation of Soot in a Spray-Guided Single Cylinder GDI Engine Operating in a Stratified Mode

2013-09-08
2013-24-0052
Forthcoming reductions in legal limits for emissions of particle matter (PM) from direct injection engines have increased the need for understanding particle distributions in the engines and the factors affecting them. Therefore, in the presented study the influence on PM-emissions of potentially important factors (fuel injection pressure, load, speed and 50% mass fraction burned phasing) on particle mass, number and size distributions were experimentally investigated. The experimental system was a spray-guided, direct injection, single-cylinder research engine operated in stratified charge mode (using gasoline with 10% ethanol as fuel), under five load and speed settings that are appropriate for stratified combustion. The particle distributions obtained from operating the engine in homogeneous combustion and stratified combustion modes were also compared.
Technical Paper

Impact of Conventional and Electrified Powertrains on Fuel Economy in Various Driving Cycles

2017-03-28
2017-01-0903
Many technological developments in automobile powertrains have been implemented in order to increase efficiency and comply with emission regulations. Although most of these technologies show promising results in official fuel economy tests, their benefits in real driving conditions and real driving emissions can vary significantly, since driving profiles of many drivers are different than the official driving cycles. Therefore, it is important to assess these technologies under different driving conditions and this paper aims to offer an overall perspective, with a numerical study in simulations. The simulations are carried out on a compact passenger car model with eight powertrain configurations including: a naturally aspirated spark ignition engine, a start-stop system, a downsized engine with a turbocharger, a Miller cycle engine, cylinder deactivation, turbocharged downsized Miller engine, a parallel hybrid electric vehicle powertrain and an electric vehicle powertrain.
Technical Paper

Particulate Emissions in a GDI with an Upstream Fuel Source

2019-04-02
2019-01-1180
Public health risk and resulting stringent emission regulations for internal combustion engines pose a need for solutions to reduce particle emissions (PN). Current PN control approaches include increasing fuel injection pressure, optimizing spray targeting, multiple injection strategies, and the use of tumble flaps together with gasoline particulate filters (GPF). Experiments were performed using a single-cylinder spark-ignited GDI engine equipped with a custom inlet manifold and a port fuel injector located 500 mm upstream. Particulate emissions were measured during stationary medium/high load operation to evaluate the effect of varying the mass split between the direct and upstream injectors. Mixing quality is improved substantially by upstream injection and can thus be controlled by altering the mass split between the injectors.
Technical Paper

Multi-Objective Optimization of Fuel Consumption and NOx Emissions with Reliability Analysis Using a Stochastic Reactor Model

2019-04-02
2019-01-1173
The introduction of a physics-based zero-dimensional stochastic reactor model combined with tabulated chemistry enables the simulation-supported development of future compression-ignited engines. The stochastic reactor model mimics mixture and temperature inhomogeneities induced by turbulence, direct injection and heat transfer. Thus, it is possible to improve the prediction of NOx emissions compared to common mean-value models. To reduce the number of designs to be evaluated during the simulation-based multi-objective optimization, genetic algorithms are proven to be an effective tool. Based on an initial set of designs, the algorithm aims to evolve the designs to find the best parameters for the given constraints and objectives. The extension by response surface models improves the prediction of the best possible Pareto Front, while the time of optimization is kept low.
Technical Paper

HCCI Operation of a Passenger Car Common Rail DI Diesel Engine With Early Injection of Conventional Diesel Fuel

2004-03-08
2004-01-0935
The possibilities of operating a direct injection Diesel engine in HCCI combustion mode with early injection of conventional Diesel fuel were investigated. In order to properly phase the combustion process in the cycle and to prevent knock, the geometric compression ratio was reduced from 17.0:1 to 13.4:1 or 11.5:1. Further control of the phasing and combustion rate was achieved with high rates of cooled EGR. The engine used for the experiments was a single cylinder version of a modern passenger car type common rail engine with a displacement of 480 cc. An injector with a small included angle was used to prevent interaction of the spray and the cylinder liner. In order to create a homogeneous mixture, the fuel was injected by multiple short injections during the compression stroke. The low knock resistance of the Diesel fuel limited the operating conditions to low loads. Compared to conventional Diesel combustion, the NOx emissions were dramatically reduced.
Technical Paper

Spark Assisted HCCI Combustion Using a Stratified Hydrogen Charge

2005-09-11
2005-24-039
Future requirements for emission reduction from combustion engines in ground vehicles might be met by using the HCCI combustion concept. In this concept a more or less homogenous air fuel mixture is compressed to auto ignition. This gives good fuel consumption compared to a normal SI engine and its ability to burn lean mixtures at low temperatures has a positive impact on exhaust emissions. However, there are challenges associated with this concept, for instance its limited operating range and combustion control. The objective of this work is to investigate a hybrid concept, based on a combination of HCCI combustion of n-heptane and SI combustion of hydrogen. The basic idea is to initiate HCCI combustion with a spark ignited stratified lean hydrogen mixture. To verify that the combustion sequence consists of flame front combustion followed by HCCI combustion, photographs of OH chemiluminescence from the combustion were taken.
Technical Paper

HCCI Combustion Using Charge Stratification for Combustion Control

2007-04-16
2007-01-0210
This work evaluates the effect of charge stratification on combustion phasing, rate of heat release and emissions for HCCI combustion. Engine experiments in both optical and traditional single cylinder engines were carried out with PRF50 as fuel. The amount of stratification as well as injection timing of the stratified charge was varied. It was found that a stratified charge can influence combustion phasing, increasing the stratification amount or late injection timing of the stratified charge leads to an advanced CA50 timing. The NOx emissions follows the CA50 advancement, advanced CA50 timing leads to higher NOx emissions. Correlation between CA50 can also be seen for HC and CO emissions when the injection timing was varied, late injection and thereby advanced CA50 timing leads to both lower HC and CO emissions.
Technical Paper

An Experimental Investigation of Fischer-Tropsch Fuels in a Light-Duty Diesel Engine

2007-01-23
2007-01-0030
Experiments were performed using a Light-Duty, single-cylinder, research engine in which the emissions, fuel consumption and combustion characteristics of two Fischer-Tropsch (F-T) Diesel fuels derived from natural gas and two conventional Diesel fuels (Swedish low sulfur Diesel and European EN 590 Diesel) were compared. Due to their low aromatic contents combustion with the F-T Diesel fuels resulted in lower soot emissions than combustion with the conventional Diesel fuels. The hydrocarbon emissions were also significantly lower with F-T fuel combustion. Moreover the F-T fuels tended to yield lower CO emissions than the conventional Diesel fuels. The low emissions from the F-T Diesel fuels, and the potential for producing such fuels from biomass, are powerful reason for future interest and research in this field.
Technical Paper

Ion Current Sensing in an Optical HCCI Engine with Negative Valve Overlap

2007-01-23
2007-01-0009
Ion current sensors have high potential utility for obtaining feedback signals directly from the combustion chamber in internal combustion engines. This paper describes experiments performed in a single-cylinder optical engine operated in HCCI mode with negative valve overlap to explore this potential. A high-speed CCD camera was used to visualize the combustion progress in the cylinder, and the photographs obtained were compared with the ion current signals. The optical data indicate that the ions responsible for the chemiluminescence from the HCCI combustion have to be in contact with the sensing electrode for an ion current to start flowing through the measurement circuit. This also means that there will be an offset between the time at which 50% of the fuel mass has burned and 50% of the ion current peak value is reached, which is readily explained by the results presented in the paper.
Technical Paper

Fuel Flow Impingement Measurements on Multi-Orifice Diesel Nozzles

2006-04-03
2006-01-1552
The injection process plays an important role in Diesel engines in terms of future emission legislations. Higher injection pressures and multiple injection events every cycle are a reality. To be able to understand how the fuel injection process can be further improved studies are needed on how higher pressure, multiple injections and multi orifice nozzles affect the overall process. The objective of this study was to further develop a measurement technique to determine injection rates and discharge coefficient for multi orifice nozzles. The technique used is based on measuring the instantaneous force of a fuel jet for a non-stationary injection process. The technique is applicable for multi orifice nozzles at high injection pressures. Both single and multiple injections can be resolved.
Technical Paper

Injection Strategy Optimization for a Light Duty DI Diesel Engine in Medium Load Conditions with High EGR rates

2009-04-20
2009-01-1441
Further restrictions on NOx emissions and the extension of current driving cycles for passenger car emission regulations to higher load operation in the near future (such as the US06 supplement to the FTP-75 driving cycle) requires attention to low emission combustion concepts in medium to high load regimes. One possibility to reduce NOx emissions is to increase the EGR rate. The combustion temperature-reducing effects of high EGR rates can significantly reduce NO formation, to the point where engine-out NOx emissions approach zero levels. However, engine-out soot emissions typically increase at high EGR levels, due to the reduced soot oxidation rates at reduced combustion temperatures and oxygen concentrations.
Technical Paper

Reducing Pressure Fluctuations at High Loads by Means of Charge Stratification in HCCI Combustion with Negative Valve Overlap

2009-06-15
2009-01-1785
Future demands for improvements in the fuel economy of gasoline passenger car engines will require the development and implementation of advanced combustion strategies, to replace, or combine with the conventional spark ignition strategy. One possible strategy is homogeneous charge compression ignition (HCCI) achieved using negative valve overlap (NVO). However, several issues need to be addressed before this combustion strategy can be fully implemented in a production vehicle, one being to increase the upper load limit. One constraint at high loads is the combustion becoming too rapid, leading to excessive pressure-rise rates and large pressure fluctuations (ringing), causing noise. In this work, efforts were made to reduce these pressure fluctuations by using a late injection during the later part of the compression. A more appropriate acronym than HCCI for such combustion is SCCI (Stratified Charge Compression Ignition).
Technical Paper

Performance of a Heavy Duty DME Engine - The Influence of Methanol and Water in the Fuel

2008-04-14
2008-01-1391
In the study reported here the combustion and emission characteristics of a heavy duty six-cylinder diesel engine fuelled with dimethyl ether (DME) of chemical grade and DME with small and varying amounts of methanol and/or water were experimentally investigated. In addition, the size distribution of emitted particles and selected unregulated emissions were sampled. Methanol and water additions had a very limited effect on emissions, but affected the combustion processes in a way that accentuated the premixed combustion and thus caused more energy to be released early in the cycle. At high load, however, the effect was reversed, due to the lack of distinct premixed combustion. The results confirm that DME combustion does not generate any accumulation mode particles. The particles that are detected are smaller than the soot size range and do not occur in greater numbers than those from a diesel engine in the corresponding size range.
Technical Paper

Optical Studies of Spray Development and Combustion Characterization of Oxygenated and Fischer-Tropsch Fuels

2008-04-14
2008-01-1393
Optical studies of combusting diesel sprays were done on three different alternative liquid fuels and compared to Swedish environmental class 1 diesel fuel (MK1). The alternative fuels were Rapeseed Oil Methyl Ester (RME), Palm Oil Methyl Ester (PME) and Fischer-Tropsch (FT) fuel. The studies were carried out in the Chalmers High Pressure High Temperature spray rig under conditions similar to those prevailing in a direct-injected diesel engine prior to injection. High speed shadowgraphs were acquired to measure the penetration of the continuous liquid phase, droplets and ligaments, and vapor penetration. Flame temperatures and relative soot concentrations were measured by emission based, line-of-sight, optical methods. A comparison between previous engine tests and spray rig experiments was conducted in order to provide a deeper explanation of the combustion phenomena in the engine tests.
Technical Paper

Analysis of Advanced Multiple Injection Strategies in a Heavy-Duty Diesel Engine Using Optical Measurements and CFD-Simulations

2008-04-14
2008-01-1328
In order to meet future emissions legislation for Diesel engines and reduce their CO2 emissions it is necessary to improve diesel combustion by reducing the emissions it generates, while maintaining high efficiency and low fuel consumption. Advanced injection strategies offer possible ways to improve the trade-offs between NOx, PM and fuel consumption. In particular, use of high EGR levels (⥸ 40%) together with multiple injection strategies provides possibilities to reduce both engine-out NOx and soot emissions. Comparisons of optical engine measurements with CFD simulations enable detailed analysis of such combustion concepts. Thus, CFD simulations are important aids to understanding combustion phenomena, but the models used need to be able to model cases with advanced injection strategies.
X