Refine Your Search

Topic

Author

Search Results

Technical Paper

Design Features of the JUNKERS 211B AIRCRAFT ENGINE

1942-01-01
420123
THE Junkers 211B engine follows the usual German practice of very large displacements and conservative mean effective pressures and rotative speeds. However, the relative light weight per unit of displacement results in a net weight per horsepower that is not far above its competitors. Fully automatic devices which control propeller speed, manifold pressure, mixture ratio, spark advance, and supercharger gear ratio follow the German policy of removing all possible distractions from the pilot. This is one of three large liquid-cooled engines known to be produced in quantity in Germany; it powers an impressive percentage of the Luftwaffe. While of external appearance and displacement that resemble the Daimler-Benz DB-601 engine, the fundamental construction, detail design practice, and metallurgy of the Junkers 211B are surprisingly different.
Technical Paper

Predicting ROAD PERFORMANCE of Commercial Vehicles

1950-01-01
500172
A SIMPLE method of predicting truck performance in terms of grade ability at a given road speed, taking into consideration rolling resistance, air resistance, and chassis friction is presented here. A brief review of fundamental considerations is given first, then the method recommended for predicting vehicle ability at a selected speed, and finally a few words on the prediction of maximum possible road speed and selection of gear ratios. The basis of the solution is the determination and expression of vehicle resistances in terms of horsepower - that is, in terms of forces acting at a velocity. A convenient method of solving the grade problem at a given speed is by means of a tabular computation sheet, which is given, together with tables and charts. These assist in making the computation an easy one as well as giving the necessary data on vehicle resistances.
Technical Paper

The New PLYMOUTH Engine

1956-01-01
560019
PLYMOUTH'S new V-8 engine has a specific output of 0.65 bhp/cu in. and 145-psi bmep — obtained through a combination of high thermal, volumetric, and mechanical efficiencies. Good design, the author points out, has achieved this high output despite the dual-venturi carburetor and the 7.6/1 compression ratio, selected for satisfactory operation on regular-grade fuels. The engine has a bore and stroke of 3.563 × 3¼, weighs 568 lb without flywheel, is 29⅜ in. long, and is designed for optimum response to future compression ratio increases. (A report of oral discussion following presentation of this paper appears on p. 220, following “The New Packard V-8 Engine,” by W. E. Schwieder.)
Technical Paper

Considerations Affecting the Life of Automotive Camshafts and Tappets

1956-01-01
560015
WORK done in a development program relative to camshafts and tappets in the design of the Chrysler overhead-valve V-8 engine is described. The types of failure encountered are categorized as wear, scuffing, and fatigue. An accelerated test procedure was designed to promote early cam-tappet failures, and the development work was predicated upon the results obtained therefrom. Among the variables affecting the failure conditions, major emphasis was placed on material development. Specifically, the greater amount of time was spent in determining the optimum tappet material, while some time was devoted to the camshaft material. A combination of adjusted chemical composition and heat-treatment of hardenable cast iron for camshaft and tappets provided the best solution to the failure problems.
Technical Paper

Development Highlights and Unique Features of New Chrysler V-8 Engine

1951-01-01
510196
THE design and development of the new valve-in-head V-8 Chrysler engine of 7.5 compression ratio are described here. Among the features discussed by the authors are: the hemispherical combustion chamber, V-8 cylinder arrangement, double-breaker distributor, “thermal flywheel” on automatic choke, and exhaust-heated and water-jacketed throttle bodies. The hemispherical combustion chamber was adopted after it had displayed excellent volumetric and indicated thermal efficiencies, and an ability to maintain these high efficiencies in service. The high volumetric efficiency, for example, is considered to be due to such design features as valves not crowded together, nor surrounded closely by the combustion-chamber walls. They are thereby fully effective in the flow of the fuel-air mixture and the exhaust gases. The authors also present performance data for this engine, which, at full throttle, develops 180 hp at 4000 rpm and 312 ft-lb of torque at 2000 rpm.
Technical Paper

Effect of Valve-Cam Ramps on Valve Train Dynamics

1999-03-01
1999-01-0801
Testing of an OHC valve train with hydraulic lash adjuster in which the valve displacements, velocities and accelerations were measured and analyzed in both time and frequency domains, coupled with analysis of the frequency content of the valve acceleration function and its ramps, show that traditional designs of the opening and closing ramps used on some IC engine valve cams can exacerbate vibration in the follower system causing higher levels of spring surge and noise. Suggestions are made for improvement to the design of the beginning and ending transitions of valve motion which can potentially reduce dynamic oscillation and vibration in the follower train.
Technical Paper

The Application of Graphics Engineering to Gear Design

1986-10-01
861347
A highly competitive market and increased emphasis on quality have gear designers searching for additional tools to produce accurate gearsets in a condensed timeframe. To meet this challenge, a Graphics Engineering method has been developed to enhance traditional gear design techniques. Graphics Engineering links interactive graphics, finite element analysis and solid modeling into a graphics/analysis development package. Starting with gear and cutter data derived by conventional techniques, it provides cutter paths and involute profiles for geometry, strength, and physical property analysis. The comprehensive data obtained through Graphics Engineering provides a powerful tool for the gear designer to increase gearset accuracy and reduce design iterations.
Technical Paper

Can the k-ε Model Withstand the Challenges Posed by Complex Industrial Flows?

1997-04-08
971516
The purpose of this paper is to present numerical solution for three-dimensional flow about rotating short cylinders using the computer program AIRFLO3D. The flow Reynolds number was kept at 106 for all computations. The drag forces on the cylinder were obtained for different rotational speeds. Predictions were obtained for both an isolated cylinder and a cylinder on a moving ground. The standard k-ε model was employed to model the turbulence. Computed drag coefficients agreed well with the previous experimental data up to a spin ratio (=rω/V) of 1.5.
Technical Paper

An Evaluation of Turbulent Kinetic Energy for the In-Cylinder Flow of a Four-Valve 3.5L SI Engine Using 3-D LDV Measurements

1997-02-24
970793
A better understanding of turbulent kinetic energy is important for improvement of fuel-air mixing, which can lead to lower emissions and reduced fuel consumption. An in-cylinder flow study was conducted using 1548 Laser Doppler Velocimetry (LDV) measurements inside one cylinder of a 3.5L four-valve engine. The measurement method, which simultaneously collects three-dimensional velocity data through a quartz cylinder, allowed a volumetric evaluation of turbulent kinetic energy (TKE) inside an automotive engine. The results were animated on a UNIX workstation, using a 3D wireframe model. The data visualization software allowed the computation of TKE isosurfaces, and identified regions of higher turbulence within the cylinder. The mean velocity fields created complex flow patterns with symmetries about the center plane between the two intake valves. High levels of TKE were found in regions of high shear flow, attributed to the collisions of intake flows.
Technical Paper

Statistical Decision Making in FMVSS Testing

1989-02-01
890771
This paper presents a method of accounting for sample variability and sample size in establishing the acceptable bogey levels. The technique makes use of the statistical tolerance theory which accounts for the variability of the sample mean and standard deviation by determining a K-factor adjusted for sample size. The result is a tolerance that is reasonably assumed to cover a specified fraction of the population of parts. The technique, although not as simple as a fixed bogey, does discriminate between designs with different levels of energy management robustness.
Technical Paper

Application of Induction Heating in Automotive Production

1935-01-01
350121
INDUCTION heating is a process or method by which metal parts are heated by simply placing them in an alternating magnetic field. The action is that of the transformer, whereby electrical energy is transferred or passed over to another isolated electric or secondary circuit by means of the magnetic field; thus, no physical attachments or electrical contacts are necessary to have electrical currents, which are dissipated as heat, flow in the parts to be processed. The strength and frequency of the alternating magnetic field can be selected to produce any desired rate of heating and ultimate temperature. A circuit can be set up to dry lacquer at 160 deg. fahr. on thin sheet-metal parts or to melt in record time immense steel ingots. Induction heating is now commercially applied in automotive production to many processes, and these are specified.
Technical Paper

Hydrogen Embrittlement in Automotive Fastener Applications

1996-02-01
960312
Fastener failure due to hydrogen embrittlement is of significant concern in the automotive industry. These types of failures occur unexpectedly. They may be very costly to the automotive company and fastener supplier, not only monetarily, but also in terms of customer satisfaction and safety. This paper is an overview of a program which one automotive company initiated to minimize hydrogen embrittlement in fasteners. The objectives of the program were two-fold. One was to obtain a better understanding of the hydrogen embrittlement phenomena as it relates to automotive fastener materials and processes. The second and most important objective, was to eliminate hydrogen embrittlement failures in vehicles. Early program efforts concentrated on a review of fastener applications and corrosion protection systems to optimize coated fasteners for hydrogen embrittlement resistance.
Technical Paper

Automated Test Request and Data Acquisition System for Vehicle Emission Testing

1997-02-24
970273
Due to new regulations, emissions development and compliance testing have become more complex. The amount of data acquired, the number of test types, and the variety of test conditions have increased greatly. Due to this increase, managing test information from request to analysis of results has become a critical factor. Also, automated test result presentation and test storage increases the value and quality of each test. This paper describes a computer system developed to cope with the increasing complexity of vehicle emission testing.
Technical Paper

Traction Batteries - Their Effects on Electric Vehicle Performance

1997-02-24
970240
A few years ago, electric vehicles (EVs) were considered to be objects of the distant future … technology that was still in its infancy, not yet ready and for those outside the “high pollution” areas probably not even worth the expenditure. But the present day scenario has changed dramatically. In the United States of America, several states are following California's lead and the need for the operating fleets to commit to purchase of Zero Emission vehicles (ZEVs) is becoming a requirement. In order to make the technology available to the utilities … as well as the public, state of the art, affordable batteries are essential for making EVs a reality and an effective means of transportation.
Technical Paper

Life Cycle Management - A Manageable Approach for Integrating Life Cycle Management into Manufacturing

1996-02-01
961028
Environmental issues have significantly impacted automotive operations worldwide. Countries are continuing to ratchet down their allowable emissions and to remain competitive, all industries must take Life Cycle Management (LCM) and implement it into everyday practice. Economic competitiveness as a part of economic development is central to the nation's social and financial well-being. America must catch-up to the rest of the world in how it views government and industry relationships as well as how to focus costs within the corporate structure. The adversarial relationships between government and industry must give way to stronger partnerships. For this concept to succeed a long term view of problems must be made by a corporation and both short and long term actions taken to resolve these problems. Industry must help create the market for recycled goods and must “walk the talk” by using recycled goods where possible.
Technical Paper

The Chrysler PowerFlite Transmission

1954-01-01
540261
THE design and construction of the PowerFlite automatic transmission are described by the authors. It is of the torque converter type, some models being water-cooled, while others are direct air cooled. Details of the hydraulic controls are explained, including the one-piece shift valve and the shuttle valve for controlling closed-throttle shifts. It is claimed that this transmission has relative simplicity, light weight, and smoothness of operation.
Technical Paper

Rating Transmissions from Highway Requirements and Vehicle Specifications

1960-01-01
600009
THE GRADEABILITY formula can be used as the basic means for rating a truck transmission. By correlating the gradeabilities in the various gear ratios with a highway requirement probability curve, the per cent of time in each ratio can be obtained. The required hours of gear life for each ratio are then determined, and compared with the available gear life in the ratios. This procedure gives a detailed analysis of a transmission rating for one vehicle specification at a specified mileage between overhauls. A limitation of the system is that it cannot be applied quickly to various vehicle specifications. The paper outlines the method for constructing a nomogram to overcome this.*
Technical Paper

Computer-Based Selection of Balanced-Life Automotive Gears

1960-01-01
600036
THIS PAPER describes balanced-life concept of gear design — in which the gear and pinion are designed to fail simultaneously. An example is presented to show how this concept allows a combination of minimum size and maximum capacity in gas turbine application. Various reasons for failure and factors in long gear life are discussed. The author analyzes the calculations needed and their programming for a digital computer. Calculating gear designs for production is a time consuming, demanding task to do manually. The use of the computer has changed this — and brought about better gear design by making it possible to study more detailed analyses to evolve optimum solutions. This paper was the Sixth L. Ray Buckendale Lecture, presented at the 1960 SAE Annual Meeting.
Technical Paper

The Development of Auto Temp II

1972-02-01
720288
The development of the AUTO TEMP II Temperature Control System used in Chrysler Corp. vehicles is summarized. A description of the design, development, function, and manufacturing aspects of the control system is presented, with emphasis on unique control parameters, reliability, serviceability, and check-out of production assemblies. Auto Temp II was developed by Chrysler in conjunction with Ranco Incorporated. The servo-controlled, closed-loop system, which has a sensitivity of 0.5 F, utilizes a water-flow control valve for temperature control, along with a cold engine lockout. The basic components are: sensor string, servo, and amplifier. All automatic functions involving control of mass flow rate, temperature, and distribution of the air entering the vehicle, are encompassed in one control unit. All components are mechanically linked through the gear train and are responsive to the amplifier through the feedback potentiometer.
X