Refine Your Search

Topic

Author

Search Results

Journal Article

Transient Thermal Modeling of Power Train Components

2012-04-16
2012-01-0956
This paper discusses simplified lumped parameter thermal modeling of power train components. In particular, it discusses the tradeoff between model complexity and the ability to correlate the predicted temperatures and flow rates with measured data. The benefits and problems associated with using a three lumped mass model are explained and the value of this simpler model is promoted. The process for correlation and optimization using modern software tools is explained. Examples of models for engines and transmissions are illustrated along with their predictive abilities over typical driving cycles.
Technical Paper

Reliability Estimation and Failure Prediction of Vehicle Systems and Components

1990-09-01
901740
For designing new products or developing new specifications, the reliability performance of systems and components experienced by the customer provides invaluable information for the engineer. This information, not only provides for the visibility of reliability requirements, but also an awareness of potential degradation of the systems and components during its life cycle. In this paper, a method is presented for predicting vehicle system and component reliability from vehicle fleet repair data. This method combines sampling stratification, computer data analysis and statistical modeling techniques into a reliability analysis procedure to provide reliability prediction. Specifically, published vehicle fleet data was used to provide the basis for predicting the vehicle system and component reliability at any mileage level.
Technical Paper

High Performance Forged Steel Crankshafts - Cost Reduction Opportunities

1992-02-01
920784
Higher horsepower per liter engines have put more demand on the crankshaft, often requiring the use of forged steel. This paper examines cost reduction opportunities to offset the penalties associated with forged steel, with raw material and machinability being the primary factors evaluated. A cost model for crankshaft processing is utilized in this paper as a design tool to select the lowest cost material grade. This model is supported by fatigue and machinability data for various steel grades. Materials considered are medium carbon, low alloy, and microalloy steels; the effects of sulfur as a machining enhancer is also studied.
Technical Paper

Exterior Body Panels - Present Manufacturing Implementation and Future Directions and Needs

1992-02-01
920372
Advances in computerized solid modeling techniques allow the realistic representation of exterior body panels as solid models, at the concept stage of part design. A flow chart of the process is presented on the use of solid models to create exterior body panels. The flow chart allows a study of the process and is extended to the next generation of capabilities.
Technical Paper

Analyzing Vibrations in an IC Engine Valve Train

1998-02-23
980570
This study analyzes the vibration characteristics of the valve train of a 2.0L SOHC Chrysler Corp. Neon engine over a range of operating speeds to investigate and demonstrate the advantages and limitations of various dynamic measurements such as displacement, velocity, and acceleration in this application. The valve train was tested in a motoring fixture at speeds of 500 to 3500 camshaft rpm. The advantages of analyzing both time and frequency domain measurements are described. Both frequency and order analysis were done on the data. The theoretical order spectra of cam displacement and acceleration were computed and compared to the experimental data. Deconvolution was used to uncover characteristic frequencies of vibration in the system. The theoretical cam acceleration spectrum was deconvolved from measured acceleration spectra to reveal the frequency response function of the follower system.
Technical Paper

Air-Bag Inflator Gas-Jet Evaluation

1993-03-01
930237
This paper directs attention to a specific region of the air-bag deployment process. Both experimental and analytical results are presented. Experimental procedures and their results are presented along with a two dimensional unsteady isentropic CFD model and a empirical gas-jet model.
Technical Paper

Experience in Sand Casting Aluminum MMC Prototype Components

1993-03-01
930179
Typical sand-casting techniques have been shown to be inappropriate in pouring particulate reinforced aluminum metal matrix composite (Al-MMC) castings. New gating/risering configurations were necessary to produce castings of acceptable soundness. Several automotive components, including brake rotors, cylinder liners and camshaft thrust plates, were prepared using special techniques. Initial durability test results of several Al-MMC prototype components are presented.
Technical Paper

Material Modeling of Structural Foams in Finite Element Analysis Using Compressive Uniaxial and Triaxial Data

1993-03-01
930434
The impact response of foam is investigated using Finite Element Analysis (FEA). A procedure will be described for determining the material constants used in the FEA material models. The procedure uses compressive uniaxial, force versus displacement, and triaxial, pressure versus volume-change, data. After the material model is constructed using the uniaxial and triaxial data, FEA is used to predict the results of a free-moving-mass striking rigidly backed foam. The limitations of the current material models are also addressed.
Technical Paper

Chrysler 8.0-Liter V-10 Engine

1993-11-01
933033
Chrysler Corporation has developed an 8.0-liter engine for light truck applications. Numerous features combine to produce the highest power and torque ratings of any gasoline-fueled light truck engine currently available while also providing commensurate durability. These features include: a deep-skirt ten-cylinder 90° “V” block, a Helmholtz resonator intake manifold that enhances both low and mid-range torque, light die cast all-aluminum pistons for low vibration, a unique firing order for smooth operation, a “Y” block configuration for strength and durability, a heavy duty truck-type thermostat to control warm up, and a direct ignition system.
Technical Paper

Chrysler 3.5 Liter V-6 Engine

1993-03-01
930875
A new 3.5 liter, 60 degrees V6 engine has been designed specifically for Chrysler's 1993 MY line of mid-size sedans - Dodge Intrepid, Eagle Vision, Chrysler Concorde and New Yorker. This new engine features many new components for enchanced performance. The cylinder head has a single overhead cam, four valve-per - cylinder design. The intake system is a cross-flow design equipped with dual throttle bodies, and the manifold also incorporates a vacuum operated tuning valve that increases the mid-range torque of the engine. A windage tray is used on every engine to reduce drag on the rotating components within the crankcase. Dual knock sensors (one per cylinder bank) are used to take advantage of the aggressive spark advance and high compression ratio. The engine also utilizes a plastic, helical, water pump impeller that contributes to low parasitic power losses. The engine incorporates many components and features to ensure durability.
Technical Paper

New Concept Modular Manual Transmission Clutch and Flywheel Assembly

1992-09-01
922110
Most United States vehicle assembly plants produce significantly more automatic transmission equipped vehicles than manual transmission vehicles. Assembling these two vehicles on a common production line can create complexity problems. This paper describes the design and development of a pre-assembled manual transmission clutch and flywheel modular assembly which reduces most of these problems. This assembly is used on the 1993 model year mini-van with a 2.5L four cylinder engine. This modular clutch system utilizes the same starter ring gear carrier (driveplate) used on automatic transmission equipped vehicles. It pilots into the crankshaft similar to the automatic transmission torque converter. It is balanced as an assembly which results in a lower system imbalance. A significant system piece cost saving, in comparison with today's competitive market, was achieved.
Technical Paper

The Behavior of Multiphase Fuel-Flow in the Intake Port

1994-03-01
940445
Most of the current fuel supply specifications, including the key parameters in the transient fuel control strategies, are experimentally determined since the complexity of multiphase fuel flow behavior inside the intake manifold is still not quantitatively understood. Optimizing these specifications, especially the parameters in transient fueling systems, is a key issue in improving fuel efficiency and reducing exhaust emissions. In this paper, a model of fuel spray, wall-film flow and wall-film vaporization has been developed to gain a better understanding of the multiphase fuel-flow behavior within the intake manifold which may help to determine the fuel supply specifications in a multi-point injection system.
Technical Paper

Springback Prediction in Sheet Forming Simulation

1994-03-01
940937
Although numerical simulation techniques for sheet metal forming become increasingly maturing in recent years, prediction of springback remains a topic of current investigation. The main point of this paper is to illustrate the effectiveness of a modelling approach where static implicit schemes are used for the prediction of springback regardless whether a static implicit or dynamic explicit scheme is used in the forming simulation. The approach is demonstrated by revisiting the 2-D draw bending of NUMISHEET'93 and numerical results on two real world stampings.
Technical Paper

Validation of Computational Vehicle Windshield De-Icing Process

1994-03-01
940600
This study is a joint development project between Chrysler Corporation and CFD Research Corporation. The objective of this investigation was to develop a 3D computational flow and heat transfer model for a vehicle windshield de-icing process. The windshield clearing process is a 3D transient, multi-medium, multi-phase heat exchange phenomenon in connection with the air flow distribution in the passenger compartment. The transient windshield de-icing analysis employed conjugate heat transfer methodology and enthalpy method to simulate the velocity distribution near the windshield inside surface, and the time progression of ice-melting pattern on the windshield outside surface. The comparison between the computed results and measured data showed very reasonable agreement, which demonstrated that the developed analysis tool is capable of simulating the vehicle cold room de-icing tests.
Technical Paper

OPNET J1850 Network Simulator

1995-02-01
950037
MIL 3's OPNET simulator was used to model Chrysler's J1850 bus. Modeled were both J1850 bus characteristics and those portions of control modules (e.g., the engine controller) which communicate on the bus. Current Chrysler control module algorithms and proposed Chrysler J1850 message formats were used to design the control module models. The control module models include all messages which are transmitted at fixed intervals over the J1850 bus. The effects of function-based messages (e.g., messages to be transmitted on a particular sensor or push-button reading) on system load were investigated by transmitting an additional message with a fixed, relatively high priority at 50 millisecond intervals.
Technical Paper

In-Situ Phase-Shift Measurement of the Time-Resolved UBHC Emissions

1995-02-01
950161
The UBHC emissions during cold starting need to be controlled in order to meet the future stringent standards. This requires a better understanding of the characteristics of the time resolved UBHC signal measured by a high frequency FID and its phasing with respect to the valve events. The computer program supplied with the instrument and currently used to compute the phase shift has many uncertainties due to the unsteady nature of engine operation during starting. A new technique is developed to measure the in-situ phase shift of the UBHC signal under the transient thermodynamic and dynamic conditions of the engine. The UBHC concentration is measured at two locations in the exhaust manifold of one cylinder in a multicylinder port injected gasoline engine. The two locations are 77 mm apart. The downstream probe is positioned opposite to a solenoid-operated injector which delivers a gaseous jet of hydrocarbon-free nitrogen upon command.
Technical Paper

Development of a Rubber-Like Headform Skin Model for Predicting the Head Injury Criterion (HIC)

1995-02-01
950883
This paper describes the development of a rubber-like skin Finite Elements Model (FEM) for the Hybrid III headform and an experimental method to determine its material properties. The finite element modeling procedures, using material parameters derived from tests conducted on the headform skin (rubber) material, are described. Dynamic responses and computations of HIC using the developed headform model show that an Elastic-Plastic Hydrodynamic (EPH) material model of the rubber can be used for headform impact simulations. The results obtained from the headform simulation using an EPH rubber material model and drop tower tests of the headform on both a rigid and a deformable structure will be compared, in order to show the applicability of the EPH model.
Technical Paper

Engine Misfire Detection by Ionization Current Monitoring

1995-02-01
950003
Engine misfires cause a negative impact on exhaust emissions. Severe cases could damage the catalyst system permanently. These are the basic reasons why CARB (California Air Resources Board) mandated the detection of engine misfires in their OBD II (On-Board Diagnostics II) regulations. For the last several years, automobile manufacturers and their suppliers have been working diligently on various solutions for the “Misfire Detection” challenge. Many have implemented a solution called “Crankshaft Velocity Fluctuation” (CVF), which utilizes the crank sensor input to calculate the variation of the crankshaft rotational speed. The theory is that any misfires will contribute to a deceleration of the crankshaft velocity due to the absence of pressure torque. This approach is marginal at best due to the fact that there could be many contributors to a crankshaft velocity deceleration under various operating conditions. To sort out which is a true misfire is a very difficult task.
Technical Paper

Experimental and Computer Simulation Analysis of Transients on an Automobile Communication Bus

1995-02-01
950038
Voltage and current surges are a major concern when it comes to ensuring the functional integrity of electrical and electronic components and modules in an automobile system. This paper presents a computer simulation study for analyzing the effect of high voltage spikes and current load dump on a new Integrated Driver/Receiver (IDR) IC, currently being developed for a J1850 Data Communication Bus in an automobile. It describes the modeling and simulation of the protection structure proposed for the device. The simulation study yields a prediction of current and voltage capability of the protection circuit based on thermal breakdown and transient responses of the circuit. Two levels of modeling, namely, the behavioral level model and the component level model, are used to generate the simulation results. Experimental data will be acquired and used to validate the simulation model when the actual device becomes available.
Technical Paper

Assessing Design Concepts for NVH Using HYFEX (Hybrid Finite Element/Experimental) Modeling

1995-05-01
951249
This paper outlines several methodologies which use finite element and experimental models to predict vehicle NVH responses. Trimmed body experimental modal subsystem models are incorporated into the finite element system model to evaluate engine mounting systems for low frequency vibration problems. Higher frequency noise issues related to road input are evaluated using experimentally derived acoustic transfer functions combined with finite element subsystem model responses. Specific examples of system models built to simulate idle shake and road noise are given. Applications to engine mounting, suspension design, and body structure criteria are discussed.
X