Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

A Fatigue Life Estimation Technique for Body Mount Joints

2012-04-16
2012-01-0733
A body mount joint is a typical clamped joint that is under severe loading conditions, due to its structural function services as a gateway of load path between body and frame of an automotive vehicle. Stresses/strains on durability concerned components at the joint cannot be captured accurately by using the pseudo stress analysis approach because of the complexity of stress state generated by the pre-stress from clamp load, contacts between the components and nonlinear material properties. In this paper, development of a technique for fatigue life estimation of the joint is described in detail.
Journal Article

Rainflow Counting Based Block Cycle Development for Fatigue Analysis using Nonlinear Stress Approach

2013-04-08
2013-01-1206
An accurate representation of proving ground loading is essential for nonlinear Finite Element analysis and component fatigue test. In this paper, a rainflow counting based multiple blocks loading development procedure is described. The procedure includes: (1) Rainflow counting analysis to obtain the relationship between load range and cumulative repeats and the statistical relationship between load range and mean load; (2) Formation of preliminary multiple loading blocks with specified load range, mean load, and the approximate cycle repeats, and construction of the preliminary multiple loading blocks; (3) Calibration and finalization of the repeats for preliminary multiple loading blocks according to the equivalent damage rule, meaning that the damage value due to the block loads is equivalent to that from a PG loading.
Journal Article

Fatigue Based Lightweight Optimization of a Pickup Cargo Box with Advanced High Strength Steels

2014-04-01
2014-01-0913
Advanced high strength steels (AHSS) offer a good balance of strength, durability, crash energy absorption and formability. Applications of AHSS for lightweight designs of automotive structures are accelerating in recent years to meet the tough new CAFE standard for vehicle fuel economy by 2025. At the same time, the new generation pickup cargo box is to be designed for a dramatic increase in payload. Upgrading the box material from conventional mild steels to AHSS is necessary to meet the conflicting requirements of vehicle light weighting and higher payload. In this paper, typical AHSS grades such as DP590 and DP780 were applied to selected components of the pickup cargo box for weight reduction while meeting the design targets for fatigue, strength and local stiffness.
Technical Paper

Techniques for Contact Considerations in Fatigue Life Estimations of Automotive Structures

2013-04-08
2013-01-1201
Contacts or interactions commonly exist between adjacent components in automotive structures, and most of the time they dominate stress status of the components. However, when the routine pseudo stress approach is employed in fatigue life estimations, simulating contacts present special challenges. This may result in coarse stress status and corresponding coarser fatigue life estimations at the contact locations. In this paper, concept, development and procedures of two techniques to consider contacts in fatigue life estimations of automotive structures are described in detail. One is still pseudo stress approach based, but employs additional 1-D connection elements to simulate contacts. The other is nonlinear stress approach based, but equivalent constantly repeating cyclic critical load cases are introduced and utilized. The contacts are simulated by interface setup provided in the software.
Technical Paper

A Study on Body Panel Stress Analysis under Distributed Loads

2014-04-01
2014-01-0906
In this paper, four possible CAE analysis methods for calculating critical buckling load and post-buckling permanent deformation after unloading for geometry imperfection sensitive thin shell structures under uniformly distributed loads have been investigated. The typical application is a vehicle roof panel under snow load. The methods include 1) nonlinear static stress analysis, 2) linear Eigen value buckling analysis 3) nonlinear static stress analysis using Riks method with consideration of imperfections, and 4) implicit quasi-static nonlinear stress analysis with consideration of imperfections. Advantage and disadvantage of each method have been discussed. Correlations between each of the method to a physical test are also conducted. Finally, the implicit quasi-static nonlinear stress analysis with consideration of geometry imperfections that are scaled mode shapes from linear Eigen value buckling analysis is preferred.
Technical Paper

Vehicle Body Panel Thermal Buckling Resistance Analysis

2014-04-01
2014-01-0926
This paper discusses CAE simulation methods to predict the thermal induced buckling issues when vehicle body panels are subjected to the elevated temperature in e-coat oven. Both linear buckling analysis and implicit quasi-static analysis are discussed and studied using a quarter cylinder shell as an example. The linear buckling analysis could produce quick but non-conservative buckling temperature. With considering nonlinearity, implicit quasi-static analysis could predict a relative conservative critical temperature. In addition, the permanent deformations could be obtained to judge if the panel remains visible dent due to the buckling. Finally these two approaches have been compared to thermal bucking behavior of a panel on a vehicle going through thermal cycle of e-coat oven with the excellent agreement on its initial design and issue fix design. In conclusion, the linear buckling analysis could be used for quick thermal buckling evaluation and comparison on a series of proposals.
X