Refine Your Search

Topic

Author

Search Results

Journal Article

Optimizing Electric Vehicle Battery Life through Battery Thermal Management

2011-04-12
2011-01-1370
In order to define and to optimize a thermal management system for a high voltage vehicular battery, it is essential to understand the environmental factors acting on the battery and their influence on battery life. This paper defines a calendar life aging model for a battery, and applies real world environmental and operating conditions to that model. Charge and usage scenarios are combined with various cooling/heating approaches. This set of scenarios is then applied to the calendar life model, permitting optimization of battery thermal management strategies. Real-world battery life can therefore be maximized, and trade-offs for grid energy conversion efficiency and fuel economy/vehicle range can be determined.
Journal Article

Investigation of LEV-III Aftertreatment Designs

2011-04-12
2011-01-0301
Proposed LEV-III emission level will require improvements in NMOG, CO and NOx emissions as measured over FTP and US06 emission cycles. Incremental improvements in washcoat technologies, cold start calibration and catalyst system design are required to develop a cost effective solution set. New catalyst technologies demonstrated both lower HC and NOx emissions with 25% less platinum group metals (PGM). FTP and US06 emissions were measured on a 4-cylinder 2.4L application which compares a close-coupled converter and close-coupled + underfloor converter systems. A PGM placement study was performed with the close-coupled converter system employing these new catalyst technologies. Emissions results suggest that the placement of PGM is critical in minimizing emissions and PGM costs.
Journal Article

Estimation of Individual Cylinder Fuel Air Ratios from a Switching or Wide Range Oxygen Sensor for Engine Control and On-Board Diagnosis

2011-04-12
2011-01-0710
The fuel air ratio imbalance between individual cylinders can result in poor fuel economy and severe exhaust emissions. Individual cylinder fuel air ratio control is one of the important techniques used to improve fuel economy and reduce exhaust emission. California Air Resources Board (CARB) also has required automotive manufacturers to equip with on-board diagnosis system for cylinder fuel air ratio imbalance detection starting in 2011. However, one of the most challenging tasks for the individual cylinder fuel air ratio control and cylinder imbalance diagnosis is how to retrieve the cylinder fuel air ratio information effectively at low cost. This paper presents a novel and practical signal processing based fuel air ratio estimation method for individual cylinder fuel air ratio balance control and on-board fuel air ratio imbalance diagnosis.
Journal Article

Rotating Clutch Temperature Model Development Using Rapid Prototype Controllers

2012-04-16
2012-01-0625
Due to the multitude of external design constraints, such as increasing fuel economy standards, and the increasing number of global vehicle programs, developers of automotive transmission controls have to cope with increasing levels of powertrain system complexity. Achieving these requirements while improving system quality, reducing development cost and improving time to market is a very challenging task. To achieve this goal, a rapid prototype controller was used to develop a new transmission clutch temperature model. This model is used to detect clutch surface overheating, improve design and enhance shift quality.
Journal Article

Sensitivity/Uncertainty Analysis of Material Thermal Degradation Models

2012-04-16
2012-01-0955
Time-temperature analysis methods are usually applied to predict the useful life of automotive components. Components life is affected by exposure to heat during vehicle service life. The extent of reduction in component life, which may be caused by material thermal degradation, depends on the component temperature and the time duration at that temperature. The rate of material thermal degradation of automotive components varies widely depending on material thermal stability, vehicle duty cycle, and the thermal environment that the component is exposed to. Thermodynamic properties such as the activation energy of each material are used to determine the rate of thermal degradation [1,2]. In this approach, material thermal degradation models are used to predict component life during the service life of a vehicle. As the rate of thermal degradation increases with increasing material temperature, the useful life of a component will be reduced as the material temperature increases.
Technical Paper

The Effects of Catalytic Converter Location and Palladium Loading on Tailpipe Emissions

2012-04-16
2012-01-1247
Meeting regulated tailpipe emission standards requires a full system approach by automotive engineers encompassing: engine design, combustion system metrics, exhaust heat management, aftertreatment design and exhaust system packaging. Engine and combustion system design targets define desired engine out exhaust constituents, exhaust gas temperatures and oil consumption rates. Protecting required catalytic converter volume in the engine bay for stricter tailpipe emission standards is becoming more difficult. Future fuel economy mandates are leading to vehicle downsizing which is affecting all aspects of vehicle component packaging. In this study, we set out to determine the potential palladium (Pd) cost penalty as a result of increased light-off time required as a catalyst is positioned further away from the engine. Two aged converter systems with different Pd loadings were considered, and EPA FTP-75 emission tested at six different catalyst positions.
Technical Paper

CFD Analysis of Various Automotive Bodies in Linear Static Pressure Gradients

2012-04-16
2012-01-0298
Establishing data adjustments that will give an interference free result for bluff bodies in automotive wind tunnels has been pursued for at least the last 45 years. Recently, the Two-Measurement correction method that yields a wake distortion adjustment for open jet wind tunnels has shown promise of being able to adjust for many of the effects of non-ideal static pressure gradients on bluff automotive bodies. Utilization of this adjustment has shown that a consistent drag results when the vehicle is subjected to the various gradients generated in open jet wind tunnels. What has been lacking is whether this consistent result is independent of the other tunnel interference effects. The studies presented here are intended to fill that gap on the performance of the two-measurement technique. The subject CFD studies are designed to eliminate all wind tunnel interference effects except for the variation of the (linear) static pressure gradient.
Technical Paper

Calibrating an Adaptive Pivoting Vane Pump to Deliver a Stepped Pressure Profile

2013-04-08
2013-01-1729
This paper presents a process for the selection of spring rate and pre-load for an adaptively controlled pivoting vane oil pump. The pivoting vane pump has two modes: high and low speed. A spring within the pump is installed to induce a torque that causes an adaptive displacement mechanism within the pump to move toward maximum oil chamber size. In low speed mode, two feedback regions are pressurized that produce torques that counter the spring generated torque. Together, both regions being pressurized by main oil gallery pressure tend to reduce pump displacement more at lower speeds than if only a single chamber is pressurized. At higher speeds, a solenoid switch turns off pressure to one of the feedback pressure chambers, thereby reducing feedback torque that counters spring torque. This enables higher pressure calibrations in this speed mode. In this paper, we identify a process for choosing the spring rate and pre-load that calibrates the adaptive displacement mechanism.
Technical Paper

Design Improvements of Urea SCR Mixing for Medium-Duty Trucks

2013-04-08
2013-01-1074
To meet the 2010 diesel engine emission regulations, an aftertreatment system was developed to reduce HC, CO, NOx and soot. In NOx reduction, a baseline SCR module was designed to include urea injector, mixing decomposition tube and SCR catalysts. However, it was found that the baseline decomposition tube had unacceptable urea mixing performance and severe deposit issues largely because of poor hardware design. The purpose of this article is to describe necessary development work to improve the baseline system to achieve desired mixing targets. To this end, an emissions Flow Lab and computational fluid dynamics were used as the main tools to evaluate urea mixing solutions. Given the complicated urea spray transport and limited packaging space, intensive efforts were taken to develop pre-injector pipe geometry, post-injector cone geometry, single mixer design modifications, and dual mixer design options.
Technical Paper

Gasoline Combustion Modeling of Direct and Port-Fuel Injected Engines using a Reduced Chemical Mechanism

2013-04-08
2013-01-1098
A set of reduced chemical mechanisms was developed for use in multi-dimensional engine simulations of premixed gasoline combustion. The detailed Primary Reference Fuel (PRF) mechanism (1034 species, 4236 reactions) from Lawrence Livermore National Laboratory (LLNL) was employed as the starting mechanism. The detailed mechanism, referred to here as LLNL-PRF, was reduced using a technique known as Parallel Direct Relation Graph with Error Propagation and Sensitivity Analysis. This technique allows for efficient mechanism reduction by parallelizing the ignition delay calculations used in the reduction process. The reduction was performed for a temperature range of 800 to 1500 K and equivalence ratios of 0.5 to 1.5. The pressure range of interest was 0.75 bar to 40 bar, as dictated by the wide range in spark timing cylinder pressures for the various cases. In order to keep the mechanisms relatively small, two reductions were performed.
Technical Paper

Multi-Dimensional Modeling and Validation of Combustion in a High-Efficiency Dual-Fuel Light-Duty Engine

2013-04-08
2013-01-1091
Using gasoline and diesel simultaneously in a dual-fuel combustion system has shown effective benefits in terms of both brake thermal efficiency and exhaust emissions. In this study, the dual-fuel approach is applied to a light-duty spark ignition (SI) gasoline direct injection (GDI) engine. Three combustion modes are proposed based on the engine load, diesel micro-pilot (DMP) combustion at high load, SI combustion at low load, and diesel assisted spark-ignition (DASI) combustion in the transition zone. Major focus is put on the DMP mode, where the diesel fuel acts as an enhancer for ignition and combustion of the mixture of gasoline, air, and recirculated exhaust gas. Computational fluid dynamics (CFD) is used to simulate the dual-fuel combustion with the final goal of supporting the comprehensive optimization of the main engine parameters.
Technical Paper

EGR Systems Evaluation in Turbocharged Engines

2013-04-08
2013-01-0936
EGR systems are widely applied in modern turbocharged diesel engines to reduce engine-out emissions and will, or are being used to mitigate engine knock in SI engines for improved SI engine efficiency and power. In this paper, different EGR systems are detailed and evaluated theoretically based on the thermodynamics of a turbocharged system featuring an EGR sub-system. Turbine expansion ratio is utilized as a metric to estimate engine efficiency, i.e., pumping losses during the gas exchange process. Approaches such as compressor and turbine bypassing are evaluated as well. Based on above analysis, a new approach is put forward to expand the turbocharger work zone, particularly in the high efficiency regions by correctly utilizing EGR systems at all engine speed range: low-pressure loop EGR system at lower engine speed range and high-pressure loop EGR system at high engine speed range.
Technical Paper

Charge Capacity Versus Charge Time in CC-CV and Pulse Charging of Li-Ion Batteries

2013-04-08
2013-01-1546
Due to their high energy density and low self-discharge rates, lithium-ion batteries are becoming the favored solution for portable electronic devices and electric vehicles. Lithium-Ion batteries require special charging methods that must conform to the battery cells' power limits. Many different charging methods are currently used, some of these methods yield shorter charging times while others yield more charge capacity. This paper compares the constant-current constant-voltage charging method against the time pulsed charging method. Charge capacity, charge time, and cell temperature variations are contrasted. The results allow designers to choose between these two methods and select their parameters to meet the charging needs of various applications.
Technical Paper

Charge Motion Analysis to Guide Engine Port Development and Enhance Combustion Stability for High Cooled Exhaust Gas Recirculation

2013-04-08
2013-01-1313
CAE tools are increasingly important in the automotive design process. In part, CAE tools can be useful in reducing the number of physical prototypes required during a product development effort. CFD tools can assess and predict cylinder charge motion for proposed designs, thereby limiting the need for prototype work. Though detailed combustion simulation results could help guide product development, the time required for such simulations limits their usefulness in the context of a production program. However equally valuable information can be obtained from gas exchange analyses which require less computation time and are run only from Intake Valve opening (IVO) to spark timing. Chemical kinetics is not included in this type of analysis. Using this approach, large numbers of configurations can be evaluated in a short period of time. Every passing year automotive engineers are challenged to attain higher fuel economy targets.
Technical Paper

Optimizing Valve Rotational Speed Using Taguchi Techniques

2010-04-12
2010-01-1096
As fuel economy regulations increase and customer preference shifts to smaller, higher power density engines it is more important to effectively cool certain areas of the cylinder head and valvetrain. In order to maximize valvetrain life and increase engine performance it is critical to maintain a near uniform valve seat temperature to enable proper sealing. As cylinder head bridges narrow, and the temperature increases, the water jacket may not be sufficient. An alternative method to ensuring equal temperature distribution across the valve is to promote low speed valve rotation. This will not only aid, cooling the valve seat, as well as cooling and cleaning the valves' seating surface. This paper describes the development and testing of a valve rotation study, utilizing the Taguchi approach in order to determine the most robust design. A test stand was utilized to examine the valve rotation in which the cam was driven directly using a DC motor.
Technical Paper

Battery Development for Stop-Start Application in Brazilian Market

2013-04-08
2013-01-1526
There is a growing worldwide concern regarding the environmental aspects related to the performance of a corporation and its products, whether by consumer demand or government requirements. The constant pressure for innovations and improvements related to sustainable development are current issues in everyday life of any institution that seeks to consolidate a position of acceptance and competitiveness in the global market. The automotive industry is one of the markets more involved and challenged to the demand of the environmental requirements in regards the limits of pollutant emissions and consequently fuel consumption. The European and North America vehicles already have more electrical content inside (either related to safety and comfort or even needs related to weather), which results in significantly higher consumption levels than traditionally observed in Brazil's application.
Technical Paper

An Application of Ant Colony Optimization to Energy Efficient Routing for Electric Vehicles

2013-04-08
2013-01-0337
With the increased market share of electric vehicles, the demand for energy-efficient routing algorithms specifically optimized for electric vehicles has increased. Traditional routing algorithms are focused on optimizing the shortest distance or the shortest time in finding a path from point A to point B. These traditional methods have been working well for fossil fueled vehicles. Electric vehicles, on the other hand, require different route optimization techniques. Negative edge costs, battery power limits, battery capacity limits, and vehicle parameters that are only available at query time, make the task of electric vehicle routing a challenging problem. In this paper, we present an ant colony based, energy-efficient routing algorithm that is optimized and designed for electric vehicles. Simulation results show improvements in the energy consumption of electric vehicles when applied to a start-to-destination routing problem.
Technical Paper

Developing the AC17 Efficiency Test for Mobile Air Conditioners

2013-04-08
2013-01-0569
Chrysler, Ford, General Motors, the U.S. Environmental Protection Agency (EPA) and the California Air Resources Board (CARB) have collaborated over the past two years to develop an efficiency test for mobile air conditioner (MAC) systems. Because the effect of efficiency differences between different MAC systems and different technologies is relatively small compared to overall vehicle fuel consumption, quantifying these differences has been challenging. The objective of this program was to develop a single dynamic test procedure that is capable of discerning small efficiency differences, and is generally representative of mobile air conditioner usage in the United States. The test was designed to be conducted in existing test facilities, using existing equipment, and within a sufficiently short time to fit standard test facility scheduling. Representative ambient climate conditions for the U.S. were chosen, as well as other test parameters, and a solar load was included.
Technical Paper

Alternative to Hydrogen/Helium as Flame Ionization Detector Fuel

2013-04-08
2013-01-1045
Flame ionization detector (FID) analyzers used in emission testing to measure total hydrocarbon emissions have been operating for the last forty years on a fuel mixture of 40% H₂ and 60% helium. These mixtures were selected based on research studies reported in the literature indicating that this particular mixed fuel combination gave the best sensitivity and relative response of the different hydrocarbons present in vehicle exhaust with respect to propane, the calibration gas. During the past few years, it was announced that there is a worldwide shortage of helium which triggered the automotive industry to look for alternatives for helium to be used in FID fuels. Helium which is produced as a byproduct from natural gas fields is non-renewable, expensive, and extremely rare on the earth. Current supply cannot keep up with demand. There are only few natural gas fields producing helium and unless new natural gas fields are found, current helium amounts will continue to dwindle.
Technical Paper

Impact of Ethanol Fuels on Regulated Tailpipe Emissions

2012-04-16
2012-01-0872
Flexible fuel vehicle production has been steadily increasing in the US over the past fifteen years. Ethanol is considered a renewable fuel additive to gasoline which helps the US efforts in minimizing the dependency on foreign oil. As a result, it is becoming very hard to find pure gasoline which does not contain some ethanol content at the pump in the US. The fuel currently available at the pump contains close to 10% ethanol. The fuel and evaporative systems components and materials on newer flexible fuel vehicles are being designed to be tolerant of the 10% ethanol content. There is a strong desire from ethanol producers to increase the ethanol content up to a 20% level. This is still being debated by the Environmental Protection Agency and a final decision has not been made yet but will be announced by the upcoming Tier 3 Notice of Public Rule Making (NPRM) in December of 2011.
X