Refine Your Search

Topic

Author

Search Results

Technical Paper

Correlation Study of Exhaust Manifold - Lab Test Results vs Customer Fleet Results

2002-03-04
2002-01-1317
The purpose of this study is to develop specifically a correlation between Exhaust Manifold Cracking Laboratory Test results and 150,000 mile customer fleet usage test results. The study shows that the exhaust manifold design meets the reliability requirements of 10 years or 150,000 miles, given 90th percentile customer usage without an evidence of cracking or audible leaks. This correlation between the Lab Test and the customer Fleet results has been expressed as an acceleration factor. An acceleration factor is the ratio of how much quicker the engine dynamometer test ( i.e. Lab Test ) can accumulate the effect of customer usage over time versus the customers themselves. The acceleration factor is provided for useful life time period of 10 years or 150,000 miles. The recommended acceleration factor, determined in this study, is 38 to 1, comparing the engine dynamometer test ( i.e. Lab Test ) results to 150,000 mile modular truck customer fleet field results.
Technical Paper

Model-based Closed-loop Control of Urea SCR Exhaust Aftertreatment System for Diesel Engine

2002-03-04
2002-01-0287
Based on our error budget analysis, the urea SCR aftertreatment system is uncontrollable under EPA 2007-emission level without an effective closed-loop control strategy. The objective of the closed-loop control is to improve transient response as well as reduce the steady state control error. But the inherent large dead time in the urea SCR aftertreatment system makes the closed-loop control a challenge. In this paper, an innovative closed-loop control architecture is introduced, which combines model-based feedforward control with variable gain-scheduling feedback control. Transient response is improved with the inverse-dynamic feedforward control and the variable-gain closed-loop control. The steady-state response is improved with the closed-loop control. Based on this new strategy, a controller is designed and validated under the simulation and test cell environment. Comparison with the baseline open-loop controller is also conducted. Finally, some conclusions are presented.
Technical Paper

Occupant Knee Impact Simulations: A Parametric Study

2003-03-03
2003-01-1168
Occupant knee impact simulations are performed in the automotive industry as an integrated design process during the course of instrument panel (IP) development. All major automakers have different categories of dynamic testing methods as part of their design process in validating their designs against the FMVSS 208 requirement. This has given rise to a corresponding number of knee impact simulations performed at various stages of product development. This paper investigates the advantages and disadvantages of various types of these knee impact simulations. Only the knee load requirement portion of the FMVSS208 is considered in this paper.
Technical Paper

Assessment Metric Identification and Evaluation for Side Airbag (SAB) Development

2011-04-12
2011-01-0257
This paper discusses steps for identifying, evaluating and recommending a quantifiable design metric or metrics for Side Airbag (SAB) development. Three functionally related and desirable attributes of a SAB are assumed at the onset, namely, effective SAB coverage, load distribution and efficient energy management at a controlled force level. The third attribute however contradicts the “banana shaped” force-displacement response that characterizes the ineffective energy management reality of most production SAB. In this study, an estimated ATD to SAB interaction energy is used to size and recommend desired force-deformation characteristic of a robust energy management SAB. The study was conducted in the following three phases and corresponding objectives: Phase 1 is a SAB assessment metric identification and estimation, using a uniform block attached to a horizontal impact machine.
Technical Paper

Development of Modular Electrical, Electronic, and Software System Architectures for Multiple Vehicle Platforms

2003-03-03
2003-01-0139
Rising costs continue to be a problem within the automotive industry. One way to address these rising costs is through modularity. Modular systems provide the ability to achieve product variety through the combination and standardization of components. Modular design approaches used in development of vehicle electrical, electronic, and software (EES) systems allow sharing of architectures/modules between different product lines (vehicles). This modular design approach may provide economies of scale, reduced development time, reduced order lead-time, easier product diagnostics, maintenance and repair. Other benefits of this design approach include development of a variety of EES systems through component swapping and component sharing. In this paper, new optimization algorithms and software tools are presented that allow vehicle EES system design engineers to develop modular architectures/modules that can be shared across vehicle platforms (for OEMs) and across OEMs (for suppliers).
Journal Article

Developing Safety Standards for FCVs and Hydrogen Vehicles

2009-04-20
2009-01-0011
The SAE Fuel Cell Vehicle (FCV) Safety Working Group has been addressing FCV safety for over 9 years. The initial document, SAE J2578, was published in 2002. SAE J2578 has been valuable as a Recommended Practice for FCV development with regard to the identification of hazards and the definition of countermeasures to mitigate these hazards such that FCVs can be operated in the same manner as conventional gasoline internal combustion engine (ICE)-powered vehicles. SAE J2578 is currently being revised so that it will continue to be relevant as FCV development moves forward. For example, test methods were refined to verify the acceptability of hydrogen discharges when parking in residential garages and commercial structures and after crash tests prescribed by government regulation, and electrical requirements were updated to reflect the complexities of modern electrical circuits which interconnect both AC and DC circuits to improve efficiency and reduce cost.
Technical Paper

Development of a Fuel Efficient Multipurpose 75W-90 Gear Lubricant

2003-10-27
2003-01-1992
Automotive gear oil development has expanded beyond the historical requirements of emphasizing wear protection to encompass modern needs for fuel economy and limited slip frictional properties. This paper describes the development process of a new generation, fuel efficient gear lubricant for use in light duty vehicles. A systematic formulation approach was used, encompassing fluid viscometrics and additive optimization. Performance testing in both laboratory and vehicle tests is described. Though standard GL-5 tests were used to confirm oxidation, wear and corrosion performance, emphasis is given to those methods used for optimizing fuel economy.
Journal Article

Effect of Operational Testing and Trim Manufacturing Process Variation on Head Injury Criterion in FMVSS 201 Tests

2008-04-14
2008-01-1218
This paper analyzes the difference in impact response of the forehead of the Hybrid III and THOR-NT dummies in free motion headform tests when a dummy strikes the interior trim of a vehicle. Hybrid III dummy head is currently used in FMVSS201 tests. THOR-NT dummy head has been in development to replace Hybrid III head. The impact response of the forehead of both the Hybrid III dummy and THOR dummy was designed to the same human surrogate data. Therefore, when the forehead of either dummy is impacted with the same initial conditions, the acceleration response and consequently the head Injury criterion (HIC) should be similar. A number of manufacturing variables can affect the impacted interior trim panels. This work evaluates the effect of process variation on the response in the form of Head Injury Criterion (HIC).
Journal Article

Gasoline Fuel Injector Spray Measurement and Characterization - A New SAE J2715 Recommended Practice

2008-04-14
2008-01-1068
With increasingly stringent emissions regulations and concurrent requirements for enhanced engine thermal efficiency, a comprehensive characterization of the automotive gasoline fuel spray has become essential. The acquisition of accurate and repeatable spray data is even more critical when a combustion strategy such as gasoline direct injection is to be utilized. Without industry-wide standardization of testing procedures, large variablilities have been experienced in attempts to verify the claimed spray performance values for the Sauter mean diameter, Dv90, tip penetration and cone angle of many types of fuel sprays. A new SAE Recommended Practice document, J2715, has been developed by the SAE Gasoline Fuel Injection Standards Committee (GFISC) and is now available for the measurement and characterization of the fuel sprays from both gasoline direct injection and port fuel injection injectors.
Technical Paper

MBT Timing Detection and its Closed-Loop Control Using In-Cylinder Ionization Signal

2004-10-25
2004-01-2976
Maximum Brake Torque (MBT) timing for an internal combustion engine is the minimum advance of spark timing for best torque. Traditionally, MBT timing is an open loop feedforward control whose values are experimentally determined by conducting spark sweeps at different speed, load points and at different environmental operating conditions. Almost every calibration point needs a spark sweep to see if the engine can be operated at the MBT timing condition. If not, a certain degree of safety margin is needed to avoid pre-ignition or knock during engine operation. Open-loop spark mapping usually requires a tremendous amount of effort and time to achieve a satisfactory calibration. This paper shows that MBT timing can be achieved by regulating a composite feedback measure derived from the in-cylinder ionization signal referenced to a top dead center crank angle position. A PI (proportional and integral) controller is used to illustrate closed-loop control of MBT timing.
Technical Paper

Inaudible Knock and Partial-Burn Detection Using In-Cylinder Ionization Signal

2003-10-27
2003-01-3149
Internal combustion engines are designed to maximize power subject to meeting exhaust emission requirements and minimizing fuel consumption. Maximizing engine power and fuel economy is limited by engine knock for a given air-to-fuel charge. Therefore, the ability to detect engine knock and run the engine at its knock limit is a key for the best power and fuel economy. This paper shows inaudible knock detection ability using in-cylinder ionization signals over the entire engine speed and load map. This is especially important at high engine speed and high EGR rates. The knock detection ability is compared between three sensors: production knock (accelerometer) sensor, in-cylinder pressure and ionization sensors. The test data shows that the ionization signals can be used to detect inaudible engine knock while the conventional knock sensor cannot under some engine operational conditions.
Journal Article

The Effects of Detailed Tire Geometry on Automobile Aerodynamics - a CFD Correlation Study in Static Conditions

2009-04-20
2009-01-0777
A correlation study was performed between static wind tunnel testing and computational fluid dynamics (CFD) for a small hatchback vehicle, with the intent of evaluating a variety of different wheel and tire designs for aerodynamic forces. This was the first step of a broader study to develop a tool for assessing wheel and tire designs with real world (rolling road) conditions. It was discovered that better correlation could be achieved when actual tire scan data was used versus traditional smooth (CAD) tire geometry. This paper details the process involved in achieving the best correlation of the CFD prediction with experimental results, and describes the steps taken to include the most accurate geometry possible, including photogrammetry scans of an actual tire that was tested, and the level of meshing detail utilized to capture the fluid effects of the tire detail.
Journal Article

Quality Inspection of Spot Welds using Digital Shearography

2012-04-16
2012-01-0182
Spot Welding is an important welding technique which is widely used in automotive and aerospace industry. One of the keys of checking the quality of the welds is measuring the size of the nugget. In this paper, the Shearographic technique is utilized to test weld joint samples under the thermal loading condition. The goal is to identify the different group of the nuggets (i.e. small, middle, and large sizes, which indicate the quality of spot welds). In the experiments, the sample under test is fixed by a magnet method from behind at the four edges. Thermal loading was applied in the back side and the sample is inspected using the digital Shearographic system in the front side. Results show the great possibility of classifying the nugget size into three groups and the measurement is well repeatable.
Technical Paper

A Table Update Method for Adaptive Knock Control

2006-04-03
2006-01-0607
Knock correction is the spark angle retard applied to the optimum ignition timing to eliminate knock. In adaptive knock control, this amount of spark retard at an operating point (i.e. Speed, load) is stored in a speed/load characteristic map. It will be reused when the engine is operated in this range once more. In this paper, a method to learn the knock correction values into a speed/load characteristic map is described. This method proportionally distributes the knock correction into the characteristic map according to the distance between the speed/load of these nodes and the current operating point. The distributed knock correction value is filtered and accumulated in its adjacent nodes. Simulation examples demonstrate that the retrieved values from the map by the proposed method are smoother than those produced by the method of [2][3]. The mathematical basis for this method is developed. The one and two independent variable cases are illustrated.
Technical Paper

Vibration Test Specification for Automotive Products Based on Measured Vehicle Load Data

2006-04-03
2006-01-0729
A test load specification is required to validate an automotive product to meet the durability and design life requirements. Traditionally in the automotive industry, load specifications for design validation tests are directly given by OEMs, which are generally developed from an envelop of generic customer usage profiles and are, in most cases, over-specified. In recent years, however, there are many occasions that a proposed load specification for a particular product is requested. The particular test load specification for a particular product is generated based on the measured load data at its mounting location on the given type of vehicles, which contains more realistic time domain load levels and associated frequency contents. The measured time domain load is then processed to frequency domain test load data by using the fast Fourier transform and damage equivalent techniques.
Technical Paper

A Real Time Statistical Method for Engine Knock Detection

2007-04-16
2007-01-1507
The traditional method of engine knock detection is to compare the knock intensity with a predetermined threshold. The calibration of this threshold is complex and difficult. A statistical knock detection method is proposed in this paper to reduce the effort of calibration. This method dynamically calculates the knock threshold to determine the knock event. Theoretically, this method will not only adapt to different fuels but also cope with engine aging and engine-to-engine variation without re-calibration. This method is demonstrated by modeling and evaluation using real-time engine dynamometer test data.
Technical Paper

Fuel Economy Improvements through Improved Automatic Transmission Warmup - Stand Alone Oil to Air (OTA) Transmission Cooling Strategy with Thermostatic Cold Flow Bypass Valve

2001-05-14
2001-01-1760
The stand alone oil to air (OTA) transmission cooling strategy with thermostatic cold flow bypass valve has been shown to be an effective means of improving the warmup of an automatic transmission. Improving the system warmup rate of an automatic transmission significantly improves its efficiency by reducing losses resulting from extremely viscous transmission fluid and can allow for calibration changes that improve overall transmission performance. Improved transmission efficiency in turn allows for improved engine efficiency and performance. The improvements obtained from increased transmission and engine efficiency result in an overall increase in vehicle fuel economy. Fuel economy and consumption are important parameters considered by the vehicle manufacturer and the customer. Fuel economy can be considered as important as reliability and durability.
Technical Paper

Accelerated Useful Life Testing and Field Correlation Methods

2002-03-04
2002-01-1175
The purpose of this paper is to present a common sense practical method for establishing and demonstrating reliability objectives. In particular, this paper will: describe an operational definition of “useful life”, describe an accelerated laboratory test procedure for demonstrating that products meet the useful life objective, and describe a method for demonstrating correlation between customer usage and laboratory testing.
Technical Paper

Multibody Dynamic Simulation of Steering Gear Systems With Three-Dimensional Surface Contacts

2006-02-14
2006-01-1960
In an effort to understand steering systems performance and properties at the microscopic level, we developed Multibody simulations that include multiple three-dimensional gear surfaces that are in a dynamic state of contact and separation. These validated simulations capture the dynamics of high-speed impact of gears traveling small distances of 50 microns in less than 10 milliseconds. We exploited newly developed analytic, numeric, and computer tools to gain insight into steering gear forces, specifically, the mechanism behind the inception of mechanical knock in steering gear. The results provided a three dimensional geometric view of the sequence of events, in terms of gear surfaces in motion, their sudden contact, and subsequent force generation that lead to steering gear mechanical knock. First we briefly present results that show the sequence of events that lead to knock.
Technical Paper

Stochastic Limit Control and Its Application to Knock Limit Control Using Ionization Feedback

2005-04-11
2005-01-0018
Spark timing of an Internal Combustion (IC) engine is often limited by engine knock in the advanced direction. The ability to operate the engine at its advanced (borderline knock) spark limit is the key for improving output power and fuel economy. Due to combustion cycle-to-cycle variations, IC engine combustion behaves similar to a random process and so does the engine performance criteria, such as IMEP (Indicated Mean Effective Pressure), and knock intensity. The combustion stability measure COVariance of IMEP assumes the IMEP is a random process. Presently, the spark limit control of IC engines is deterministic in nature. The controller does not utilize any stochastic information associated with control parameters such as knock intensity for borderline spark limit control. This paper proposes a stochastic limit control strategy for borderline knock control. It also develops a simple stochastic model for evaluating the proposed stochastic controller.
X