Refine Your Search

Topic

Author

Search Results

Journal Article

Steady and Transient CFD Approach for Port Optimization

2008-04-14
2008-01-1430
The intake and exhaust port design plays a substantial role in performance of combustion systems. The port design determines the volumetric efficiency and in-cylinder charge motion of the spark-ignited engine which influences the thermodynamic properties directly related to the power output, emissions, fuel consumption and NVH properties. Thus intake port has to be appropriately designed to fulfill the required charge motion and high flow performance. While turbulence intensity and air-mixture quality affect dilution tolerance and fuel economy as a result, breathing ability affects wide open throttle performance. Traditional approaches require experimental techniques to reach a target balance between the charge motion and breathing capacity. Such techniques do not necessarily result in an optimized solution.
Journal Article

Gasoline Fuel Injector Spray Measurement and Characterization - A New SAE J2715 Recommended Practice

2008-04-14
2008-01-1068
With increasingly stringent emissions regulations and concurrent requirements for enhanced engine thermal efficiency, a comprehensive characterization of the automotive gasoline fuel spray has become essential. The acquisition of accurate and repeatable spray data is even more critical when a combustion strategy such as gasoline direct injection is to be utilized. Without industry-wide standardization of testing procedures, large variablilities have been experienced in attempts to verify the claimed spray performance values for the Sauter mean diameter, Dv90, tip penetration and cone angle of many types of fuel sprays. A new SAE Recommended Practice document, J2715, has been developed by the SAE Gasoline Fuel Injection Standards Committee (GFISC) and is now available for the measurement and characterization of the fuel sprays from both gasoline direct injection and port fuel injection injectors.
Journal Article

The Electric Fan as a Cooling Package Air Flow Meter

2012-04-16
2012-01-0954
A D.C. permanent magnet motor powered fan can serve as a cooling package air flow meter. This allows for continuous air flow monitoring during vehicle operation with applications to more precise air flow control schemes. In the freewheel mode, the air flow is a linear function of the open circuit voltage of the motor. In the powered mode, the motor voltage and current can be used with a motor and fan model to predict fan air flow. The model is explained and verifying test results are presented. Comparison of the accuracy and complexity vs. that of arrays of precision anemometers is provided.
Journal Article

A New Automotive Air Conditioning System Simulation Tool Developed in MATLAB/Simulink

2013-04-08
2013-01-0850
Accurate evaluation of vehicles' transient total power requirement helps achieving further improvements in vehicle fuel efficiency. When operated, the air-conditioning (A/C) system is the largest auxiliary load on a vehicle, therefore accurate evaluation of the load it places on the vehicle's engine and/or energy storage system is especially important. Vehicle simulation models, such as "Autonomie," have been used by OEMs to evaluate vehicles' energy performance. However, the load from the A/C system on the engine or on the energy storage system has not always been modeled in sufficient detail. A transient A/C simulation tool incorporated into vehicle simulation models would also provide a tool for developing more efficient A/C systems through a thorough consideration of the transient A/C system performance. The dynamic system simulation software MATLAB/Simulink® is frequently used by vehicle controls engineers to develop new and more efficient vehicle energy system controls.
Technical Paper

Power Distribution for Spacecraft Payloads that Employ State of the Art Radiation Hardened Integrated Circuits

2006-11-07
2006-01-3058
Recent advances in the state of the art of space-borne data processors and signal processors have occurred that present some unprecedented constraints relating to their power needs. Such processors include the class of multiprocessors providing computational capabilities in the billions of floating point operations per second. Processors of this type tend to require use of modern radiation tolerant or radiation hardened integrated circuits requiring very low voltage power supplies that place considerable challenge on power distribution and conversion within those processing payloads. The primary challenges are efficient conversion of power from the spacecraft power bus to these low voltages and distribution of the very high accompanying currents within the payload while maintaining proper voltage regulation (typically +/− 5%). Some integrated circuits require 10 Amps or more at 1Volt, as an example [3], [6].
Technical Paper

Radiated Noise Prediction of Air Induction Systems Using Filter Seal Modeling and Coupled Acoustic-Structural Simulation Techniques

2007-04-16
2007-01-0253
In this paper, an analytical procedure for prediction of shell radiated noise of air induction systems (AIS) due to engine acoustic excitation, without a prototype and physical measurement, is presented. A set of modeling and simulation techniques are introduced to address the challenges to the analytical radiated noise prediction of AIS products. A filter seal model is developed to simulate the unique nonlinear stiffness and damping properties of air cleaner boxes. A finite element model (FEM) of the AIS assembly is established by incorporating the AIS structure, the proposed filter seal model and its acoustic cavity model. The coupled acoustic-structural FEM of the AIS assembly is then employed to compute the velocity frequency response of the AIS structure with respect to the air-borne acoustic excitations.
Technical Paper

High Efficient LED Headlamp Design-Styling versus Light Performance

2007-04-16
2007-01-0874
First LED headlamps will be released into the market in 2007. Special permissions allow this introduction although the official regulation is still under discussion in ECE. The LED technology for front lighting has entered into a new phase from theoretical, prototype status to real and practical applications. Additionally in Europe the legislation, which is under preparation, defines LED modules with one or more LED chips in a row which should be replaceable. With this boundary conditions headlamp suppliers needs to balance between an attractive and innovative styling, demanded by car manufacturers and the light performance to gurantee good visibility at night. The paper describes the methods how to design an LED headlamp with high efficiency by keeping in mind the parameters: packaging, weight, styling and light perfromance. Results with specific design proposals are shown.
Technical Paper

Heat Simulation in Lighting

2007-04-16
2007-01-1388
During last 10-15 years we could have seen quite big changes in automotive lighting. The most important changes are: a) plastic materials mostly removed metal and glass material from lighting products raised heat issue of plastics materials b) escalation of competition between lighting suppliers (globalization, merging, …) decrease of time and cost for development of the new product as much as possible
Technical Paper

A Real Time Statistical Method for Engine Knock Detection

2007-04-16
2007-01-1507
The traditional method of engine knock detection is to compare the knock intensity with a predetermined threshold. The calibration of this threshold is complex and difficult. A statistical knock detection method is proposed in this paper to reduce the effort of calibration. This method dynamically calculates the knock threshold to determine the knock event. Theoretically, this method will not only adapt to different fuels but also cope with engine aging and engine-to-engine variation without re-calibration. This method is demonstrated by modeling and evaluation using real-time engine dynamometer test data.
Technical Paper

A Correlation Study between the Full Scale Wind Tunnels of Chrysler, Ford, and General Motors

2008-04-14
2008-01-1205
A correlation of aerodynamic wind tunnels was initiated between Chrysler, Ford and General Motors under the umbrella of the United States Council for Automotive Research (USCAR). The wind tunnels used in this correlation were the open jet tunnel at Chrysler's Aero Acoustic Wind Tunnel (AAWT), the open jet tunnel at the Jacobs Drivability Test Facility (DTF) that Ford uses, and the closed jet tunnel at General Motors Aerodynamics Laboratory (GMAL). Initially, existing non-competitive aerodynamic data was compared to determine the feasibility of facility correlation. Once feasibility was established, a series of standardized tests with six vehicles were conducted at the three wind tunnels. The size and body styles of the six vehicles were selected to cover the spectrum of production vehicles produced by the three companies. All vehicles were tested at EPA loading conditions. Despite the significant differences between the three facilities, the correlation results were very good.
Technical Paper

Method to Efficiently Implement Automotive Application Algorithms Using Signal Processing Engine (SPE) of Copperhead Microcontroller

2008-04-14
2008-01-1222
This paper presents the studies on how to efficiently and easily implement ECU application algorithms using the Signal Processing Engine (SPE) of the Copperhead microcontroller. With the introduced development and testing concepts and methods, users can easily establish their own PC based SPE emulation system. All application unit testing and verification work for the fixed point implementation using SPE functions can be easily conducted in PC without relying on a costly real time test bench and expensive third party dedicated software. With this simple development environment, the code can be run in both embedded controllers and PCs with exact bit to bit numerical behavior. The paper also demonstrates many other benefits such as code statistics information retrieval, floating simulation mode, automated code verification, online and offline code sharing.
Technical Paper

Combustion Characteristics of a Single-Cylinder Engine Equipped with Gasoline and Ethanol Dual-Fuel Systems

2008-06-23
2008-01-1767
The requirement of reduced emissions and improved fuel economy led the introduction of direct-injection (DI) spark-ignited (SI) engines. Dual-fuel injection system (direct-injection and port-fuel-injection (PFI)) was also used to improve engine performance at high load and speed. Ethanol is one of the several alternative transportation fuels considered for replacing fossil fuels such as gasoline and diesel. Ethanol offers high octane quality but with lower energy density than fossil fuels. This paper presents the combustion characteristics of a single cylinder dual-fuel injection SI engine with the following fueling cases: a) gasoline for PFI and DI, b) PFI gasoline and DI ethanol, and c) PFI ethanol and DI gasoline. For this study, the DI fueling portion varied from 0 to 100 percentage of the total fueling over different engine operational conditions while the engine air-to-fuel ratio remained at a constant level.
Technical Paper

Interpretation of Time-Frequency Distribution Cross Terms

2008-04-14
2008-01-0270
Noise and vibration signals which are stationary are frequently analyzed for frequency content using Fourier Transform methods. Frequency content can be clearly displayed, but temporal characteristics of signals can easily be obscured in a frequency spectrum. Several commonly available methods of analyzing nonstationary signals are available, such as short-time Fourier Transform and wavelet analysis. Smearing of data in the time and/or frequency domains leads to limited usefulness of these methods in analyzing rapidly varying signals. This also applies to stationary signals with perceivable temporal characteristics. The Wigner Distribution is a time-frequency analysis which can analyze rapidly varying signals and show the effects of rapid changes in signal characteristics. It is appealing because it fully preserves all the information present in the original signal.
Technical Paper

Adaptive nth Order Lookup Table used in Transmission Double Swap Shift Control

2008-04-14
2008-01-0538
The new Chrysler six-speed transaxle makes use of an underdrive assembly to extend a four-speed automatic transmission to six-speed. It is achieved by introducing double-swap shifts. During double-swap shift, learning the initial clutch torque capacity of the underdrive assembly's subsystem has a direct impact on the shift quality. A new method is proposed to compute and learn the initial clutch torque capacity of the releasing element. In this paper, we will outline a new mathematical method to compute and learn the accurate starting point of the clutch torque capacity for double swap shift control. The performance of the shift is demonstrated and the importance of the adaptation to shift quality is highlighted. An nth order lookup table is presented; this table contains n rows and m columns. Every row defines a relationship between the dependent variable such as actuator duty cycle and one independent variable such as transmission oil temperature, input torque or battery voltage.
Technical Paper

Vehicle-to-Vehicle Frontal Impacts: 2D Numerical Study

2008-04-14
2008-01-0506
A 2D model for vehicle-to-vehicle impact analysis that was presented in an earlier paper [1], has been used to study several two-vehicle frontal impacts with different incidence angles, frontal overlap offsets, and mass ratios. The impacts have been evaluated in terms of energy and momentum change in the bullet vehicle and the target vehicle. Based on comparisons between pre- and post-impact longitudinal, lateral, and angular components of kinetic energy, and linear and angular momenta, the impacts experienced by the target vehicle and the bullet vehicle have been classified as collinear or oblique. These results have been used to propose a definition of frontal impact based on vehicle kinematics during a crash.
Technical Paper

A Case Study in Structural Optimization of an Automotive Body-In-White Design

2008-04-14
2008-01-0880
A process for simultaneously optimizing the mechanical performance and minimizing the weight of an automotive body-in-white will be developed herein. The process begins with appropriate load path definition though calculation of an optimized topology. Load paths are then converted to sheet metal, and initial critical cross sections are sized and shaped based on packaging, engineering judgment, and stress and stiffness approximations. As a general direction of design, section requirements are based on an overall vehicle “design for stiffness first” philosophy. Design for impact and durability requirements, which generally call for strength rather than stiffness, are then addressed by judicious application of the most recently developed automotive grade advanced high strength steels. Sheet metal gages, including tailored blanks design, are selected via experience and topometry optimization studies.
Technical Paper

The Difficulties to Implement a Product Development Process

2007-11-28
2007-01-2779
The target of all product development engineering departments is to design products efficiently. To do that the organizations needs a solid development process that drives the product development team to achieve the performance, cost, quality, reliability and manufacturability objectives. If the objective and the way to achieve it are so clear, why is the implementation of a “product development” process not easy? The answer lies in the way the process is implemented. In most organizations is so dramatic and painful because the upper management team is not engaged to promote these changes. The concepts and benefits of these changes are not fully comprehended by the engineers and their support staff.
Technical Paper

Dynamic Analysis of Transmission Torque Utilizing the Lever Analogy

2009-04-20
2009-01-1137
This paper presents methods for analyzing and visualizing the relationship between input torque, clutch torque, output torque and input acceleration during the inertia phase of a shift. The methods presented are an expansion of the lever analogy [1]. The methods are useful for understanding how geartrain inertia affects control, both its magnitude and distribution. Clutch energy and shift speeds are also easy to calculate and understand using the tools presented. Lastly the methods show why the optimum control strategies for various transmission configurations (such as DCT's, planetary transmissions, etc.) are different in the inertia phase.
Technical Paper

Production Solutions for Utilization of Both R1234yf and R134a in a Single Global Platform

2009-04-20
2009-01-0172
As global automobile manufacturers prepare for the phase-out of R134a in Europe, they must address the issue of using the new refrigerant for European sales only or launching the product worldwide. Several factors play into this decision, including cost, service, risk, customer satisfaction, capacity, efficiency, etc. This research effort addresses the minimal vehicle-level hardware differences necessary to provide a European solution of R1234yf while continuing to install R134a into vehicles for the rest of the world. It is anticipated that the same compressor, lubricant and condenser; most fluid transport lines; and in most cases the evaporator can be common between the two systems.
Technical Paper

FEA Simulation of Induction Hardening and Residual Stress of Auto Components

2009-04-20
2009-01-0418
The paper studies the distributions of residual stresses in auto components after induction hardening. Three prototype parts are analyzed in this paper. Firstly, the temperature fields of the analyzed parts are quantitatively simulated during quenching by simulating surface heating to the austenitization temperature of the material. Secondly, the formation and states of the residual stresses are predicted. Therefore the distribution of residual stress is simulated and shows compressive stresses on the surface of components so that the strength can be improved. The simulated results by computer are compared with experimental results. The good comparison indicates that the results obtained by the FEA analysis are reliable. Thus, it can be concluded that the FEA (Finite element analysis) program is effectively developed to simulate heating and quenching processes and residual stresses distribution.
X