Refine Your Search

Topic

Author

Search Results

Journal Article

Effects of Material Properties on Static Load-Deflection and Vibration of a Non-Pneumatic Tire During High-Speed Rolling

2011-04-12
2011-01-0101
The Michelin Tweel tire structure has recently been developed as an innovative non-pneumatic tire which has potential for improved handling, grip, comfort, low energy loss when impacting obstacles and reduced rolling resistance when compared to a traditional pneumatic tire. One of the potential sources of vibration during rolling of a non-pneumatic tire is the buckling phenomenon and snapping back of the spokes in tension when they enter and exit the contact zone. Another source of noise was hypothesized due to a flower petal ring vibration effect due to discrete spoke interaction with the ring and contact with the ground during rolling as the spokes cycle between tension and compression. Transmission of vibration between the ground force, ring and spokes to the hub was also considered to be a significant contributor to vibration and noise characteristics of the Tweel.
Journal Article

Control Allocation for Multi-Axle Hub Motor Driven Land Vehicles

2016-04-05
2016-01-1670
This paper outlines a real-time hierarchical control allocation algorithm for multi-axle land vehicles with independent hub motor wheel drives. At the top level, the driver’s input such as pedal position or steering wheel position are interpreted into desired global state responses based on a reference model. Then, a locally linearized rigid body model is used to design a linear quadratic regulator that generates the desired global control efforts, i.e., the total tire forces and moments required track the desired state responses. At the lower level, an optimal control allocation algorithm coordinates the motor torques in such a manner that the forces generated at tire-road contacts produce the desired global control efforts under some physical constraints of the actuation and the tire/wheel dynamics. The performance of the proposed control system design is verified via simulation analysis of a 3-axle heavy vehicle with independent hub-motor drives.
Journal Article

Fuzzy Logic Approach to Vehicle Stability Control of Oversteer

2011-04-12
2011-01-0268
Traditional Electronic Stability Control (ESC) for automobiles is usually accomplished through the use of estimated vehicle dynamics from simplified models that rely on parameters such as cornering stiffness that can change with the vehicle state and time. This paper proposes a different method for electronic stability control of oversteer by predicting the degree of instability in a vehicle. The algorithm is solely based on measurable response characteristics including lateral acceleration, yaw rate, speed, and driver steering input. These signals are appropriately conditioned and evaluated with fuzzy logic to determine the degree of instability present. When the “degree of instability” passes a certain threshold, the appropriate control action is applied to the vehicle in the form of differential yaw braking. Using only the measured response of the vehicle alleviates the problem of degraded performance when vehicle parameters change.
Technical Paper

Wear Resistance of Lunar Wheel Treads Made of Polymeric Fabrics

2009-04-20
2009-01-0065
The purpose of this research is to characterize the wear resistance of wheel treads made of polymeric woven and non-woven fabrics. Experimental research is used to characterize two wear mechanisms: (1) external wear due to large sliding between the tread and rocks, and (2) external wear due to small sliding between the tread and abrasive sand. Experimental setups include an abrasion tester and a small-scale merry-go-round where the tread is attached to a deformable rolling wheel. The wear resistance is characterized using various measures including, quantitatively, by the number of cycles to failure, and qualitatively, by micro-visual inspection of the fibers’ surface. This paper describes the issues related to each experiment and discusses the results obtained with different polymeric materials, fabric densities and sizes. The predominant wear mechanism is identified and should then be used as one of the criteria for further design of the tread.
Technical Paper

Compliant Link Suspension

2009-04-20
2009-01-0225
This paper discusses a compliant link suspension concept developed for use on a high performance automobile. This suspension uses compliant or flexible members to integrate energy storage and kinematic guidance functions. The goal of the design was to achieve similar elasto-kinematic performance compared to a benchmark OEM suspension, while employing fewer components and having reduced mass and complexity, and potentially providing packaging advantages. The proposed suspension system replaces a control arm in the existing suspension with a ternary supported compliant link that stores energy in bending during suspension vertical motion. The design was refined iteratively by using a computational model to simulate the elasto-kinematic performance as the dimensions and attachment point locations of the compliant link were varied, until the predicted performance closely matched the performance of the benchmark suspension.
Technical Paper

Design of a Scaled Off-Vehicle Wheel Testing Device for Textile Tread Wear

2009-04-20
2009-01-0562
This paper describes the development of test equipment for determining the wear viability of various lunar wheel tread materials with service lives of up to ten years and 10,000 km. The problem is defined, and concepts are proposed, evaluated, and selected. An abrasive turntable is chosen for simplicity and accuracy of modeling the original wheel configuration. Additionally, the limitations of the test are identified, such as the sensitivity to off-vertical loading, and future work is projected in order to more effectively continue testing. Finally, this paper presents the challenges of collaborative research effort between an undergraduate research team and industry, with government lab representatives as customers
Technical Paper

Bonding Strength Modeling of Polyurethane to Vulcanized Rubber

2009-04-20
2009-01-0605
Tires manufactured from polyurethane (PU) have been espoused recently for reduced hysteretic loss, but the material provides poor traction or poor wear resistance in the application, requiring inclusion of a traditional vulcanized rubber tread at the contact surface. The tread can be attached by adhesive methods after the PU body is cured, or the PU can be directly cured to reception sites on the rubber chain molecules unoccupied by crosslinked (vulcanizing) sulfur atoms. This paper provides a study of the two bonding options, both as-manufactured and after dynamic loading representative of tire performance in service. Models of each process are introduced, and an experimental comparison of the bonding strength between each method is made. Results are applied to tire fatigue simulation.
Technical Paper

Independent Torque Distribution Strategies for Vehicle Stability Control

2009-04-20
2009-01-0456
This paper proposes and compares torque distribution management strategies for vehicle stability control (VSC) of vehicles with independently driven wheels. For each strategy, the following feedback control variables are considered turn by turn: 1) yaw rate 2) lateral acceleration 3) both yaw rate and lateral acceleration. Computer simulation studies are conducted on the effects of road friction conditions, feedback controller gains, and a driver emulating speed controller. The simulation results indicated that all VSC torque management strategies are generally very effective in tracking the reference yaw rate and lateral acceleration of the vehicle on both dry and slippery surface conditions. Under the VSC strategies employed and the test conditions considered, the sideslip angle of the vehicle remained very small and always below the desired or target values.
Technical Paper

Development of Endurance Testing Apparatus Simulating Wheel Dynamics and Environment on Lunar Terrain

2010-04-12
2010-01-0765
This paper entails the design and development of a NASA testing system used to simulate wheel operation in a lunar environment under different loading conditions. The test system was developed to test the design of advanced nonpneumatic wheels to be used on the NASA All-Terrain Hex-Legged Extra-Terrestrial Explorer (ATHLETE). The ATHLETE, allowing for easy maneuverability around the lunar surface, provides the capability for many research and exploration opportunities on the lunar surface that were not previously possible. Each leg, having six degrees of freedom, allows the ATHLETE to accomplish many tasks not available on other extra-terrestrial exploration platforms. The robotic vehicle is expected to last longer than previous lunar rovers.
Technical Paper

Effects of Tire and Vehicle Design Characteristics on Rollover of Tractor Semi-Trailers

2004-03-08
2004-01-1739
Understanding the effects of tire and vehicle properties on the rollover propensity of tractor semi-trailer trucks is essential. The major objective of the project described by this paper was to develop a simplified computational tool that can be used to understand and predict the effects of various tire characteristics and truck design parameters on rollover under steady cornering and non-tripped conditions. In particular, this tool may be used to help understand the basic mechanisms governing rollover propensity of trucks equipped with New Generation Wide Single tires as contrasted with conventional tires. Effects of tire flexibility, roll-compliant suspensions, fifth - wheel lash and nonlinear suspension characteristics are included in the model and are presented below. Design parameter data used as input to the model were obtained from Michelin Americas Research and Development Corporation.
Technical Paper

Testing a Formula SAE Racecar on a Seven-Poster Vehicle Dynamics Simulator

2002-12-02
2002-01-3309
Vehicle dynamics simulation is one of the newest and most valuable technologies being applied in the racing world today. Professional designers and race teams are investing heavily to test and improve the dynamics of their suspension systems through this new technology. This paper discusses the testing of one of Clemson University's most recent Formula SAE racecars on a seven-poster vehicle dynamics simulator; commonly known as a “shaker rig.” Testing of the current dampers using a shock dynamometer was conducted prior to testing and results are included for further support of conclusions. The body of the paper is a discussion of the setup and testing procedures involved with the dynamic simulator. The results obtained from the dynamic simulator tests are then analyzed in conjunction with the shock dynamometer results. Conclusions are formed from test results and methods for future improvements to be applied in Formula SAE racing are suggested.
Technical Paper

Determination of Fracture Strain of Advanced High Strength Steels Using Digital Image Correlation in Combination with Thinning Measurement

2017-03-28
2017-01-0314
Fracture strain data provide essential information for material selection and serve as an important failure criterion in computer simulations of crash events. Traditionally, the fracture strain was measured by evaluating the thinning at fracture using tools such as a microscope or a point micrometer. In the recent decades, digital image correlation (DIC) has evolved as an advanced optical technique to record full-field strain history of materials during deformation. Using this technique, a complete set of the fracture strains (including major, minor, and thickness strains) can be approximated for the material. However, results directly obtained from the DIC can be dependent on the experiment setup and evaluation parameters, which potentially introduce errors to the reported values.
Technical Paper

Integrated Computational Materials Engineering (ICME) Multi-Scale Model Development for Advanced High Strength Steels

2017-03-28
2017-01-0226
This paper presents development of a multi-scale material model for a 980 MPa grade transformation induced plasticity (TRIP) steel, subject to a two-step quenching and partitioning heat treatment (QP980), based on integrated computational materials engineering principles (ICME Model). The model combines micro-scale material properties defined by the crystal plasticity theory with the macro-scale mechanical properties, such as flow curves under different loading paths. For an initial microstructure the flow curves of each of the constituent phases (ferrite, austenite, martensite) are computed based on the crystal plasticity theory and the crystal orientation distribution function. Phase properties are then used as an input to a state variable model that computes macro-scale flow curves while accounting for hardening caused by austenite transformation into martensite under different straining paths.
Technical Paper

VoGe: A Voice and Gesture System for Interacting with Autonomous Cars

2017-03-28
2017-01-0068
In the next 20 years fully autonomous vehicles are expected to be in the market. The advance on their development is creating paradigm shifts on different automotive related research areas. Vehicle interiors design and human vehicle interaction are evolving to enable interaction flexibility inside the cars. However, most of today’s vehicle manufacturers’ autonomous car concepts maintain the steering wheel as a control element. While this approach allows the driver to take over the vehicle route if needed, it causes a constraint in the previously mentioned interaction flexibility. Other approaches, such as the one proposed by Google, enable interaction flexibility by removing the steering wheel and accelerator and brake pedals. However, this prevents the users to take control over the vehicle route if needed, not allowing them to make on-route spontaneous decisions, such as stopping at a specific point of interest.
Technical Paper

Control Optimization of a Charge Sustaining Hybrid Powertrain for Motorsports

2018-04-03
2018-01-0416
The automotive industry is aggressively pursuing fuel efficiency improvements through hybridization of production vehicles, and there are an increasing number of racing series adopting similar architectures to maintain relevance with current passenger car trends. Hybrid powertrains offer both performance and fuel economy benefits in a motorsport setting, but they greatly increase control complexity and add additional degrees of freedom to the design optimization process. The increased complexity creates opportunity for performance gains, but simulation based tools are necessary since hybrid powertrain design and control strategies are closely coupled and their optimal interactions are not straightforward to predict. One optimization-related advantage that motorsports applications have over production vehicles is that the power demand of circuit racing has strong repeatability due to the nature of the track and the professional skill-level of the driver.
Technical Paper

Evaluation of Alternative Steering Devices with Adjustable Haptic Feedback for Semi-Autonomous and Autonomous Vehicles

2018-04-03
2018-01-0572
Emerging autonomous driving technologies, with emergency navigating capabilities, necessitates innovative vehicle steering methods for operators during unanticipated scenarios. A reconfigurable “plug and play” steering system paradigm enables lateral control from any seating position in the vehicle’s interior. When required, drivers may access a stowed steering input device, establish communications with the vehicle steering subsystem, and provide direct wheel commands. Accordingly, the provision of haptic steering cues and lane keeping assistance to navigate roadways will be helpful. In this study, various steering devices have been investigated which offer reconfigurability and haptic feedback to create a flexible driving environment. A joystick and a robotic arm that offer multiple degrees of freedom were compared to a conventional steering wheel.
Technical Paper

Optimization to Improve Lateral Stability of Tractor Semi-Trailers During Steady State Cornering

2004-10-26
2004-01-2690
Decreasing the propensity for rollover during steady state cornering of tractor semi-trailers is a key advantage to the trucking industry. This will be referred to as “increasing the lateral stability during steady state cornering” and may be accomplished by changes in design and loading variables which influence the behavior of a vehicle. To better understand the effects of such changes, a computer program was written to optimize certain design variables and thus maximize the lateral acceleration where an incipient loss of lateral stability occurs. The vehicle model used in the present investigation extends that developed by Law [1] and presented in Law and Janajreh [2]. The original model included the effects of tire flexibility, nonlinear roll-compliant suspensions, and fifth wheel lash. This model was modified to include (a) additional effects of displacement due to both lateral and vertical tire flexibility, and (b) provisions for determining “off-tracking”.
Technical Paper

Ride Dynamics and Pavement Loading of Tractor Semi-Trailers on Randomly Rough Roads

2004-10-26
2004-01-2622
An investigation of the vertical dynamics of a tractor semi-trailer traversing a random road profile was conducted. This paper presents the development of a 14 degree-of-freedom (DOF), dynamic ride model of a tractor semi-trailer. It is based on work previously conducted by Vaduri and Law [1] and Law et al [2]. The DOFs include: (a) vertical displacements of each of the five axles, the tractor frame, the engine on its mounts, the cab on its suspension, and the driver's seat; (b) pitch displacements of the trailer with respect to the tractor, the cab, and the rigid tractor frame; and, (c) the first bending or beaming modes of the tractor and trailer frames. The model also incorporates suspension friction, and tire non-uniformities. The simulation of the model is conducted using MATLAB software.
Technical Paper

Actively Articulated Wheeled Architectures for Autonomous Ground Vehicles - Opportunities and Challenges

2023-04-11
2023-01-0109
Traditional ground vehicle architectures comprise of a chassis connected via passive, semi-active, or active suspension systems to multiple ground wheels. Current design-optimizations of vehicle architectures for on-road applications have diminished their mobility and maneuverability in off-road settings. Autonomous Ground Vehicles (AGV) traversing off-road environments face numerous challenges concerning terrain roughness, soil hardness, uneven obstacle-filled terrain, and varying traction conditions. Numerous Active Articulated-Wheeled (AAW) vehicle architectures have emerged to permit AGVs to adapt to variable terrain conditions in various off-road application arenas (off-road, construction, mining, and space robotics). However, a comprehensive framework of AAW platforms for exploring various facets of system architecture/design, analysis (kinematics/dynamics), and control (motions/forces) remains challenging.
Technical Paper

On Enhanced Fuzzy Sliding-Mode Controller and Its Chattering Suppression for Vehicle Semi-Active Suspension System

2018-04-03
2018-01-1403
This paper aims to present an enhanced fuzzy sliding-mode control scheme with variable rate reaching law for semi-active vehicle suspension systems, which can reduce chattering phenomena in high frequency compared with the sliding-mode controller with traditional exponent reaching law. First, an ideal-skyhook damping suspension system is taken as reference model; then the new control law is synthesized by employing the fuzzy logic control while considering the sliding-mode reaching segment characteristics, which can dynamically change the reaching rate to suppress chattering in closed-loop control systems; finally, simulation analysis is conducted under both random road and bump road surface, the results verified the effectiveness and feasibility of the proposed control scheme.
X