Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Explicit Equations to Estimate the Flammability of Blends of Diesel Fuel, Gasoline and Ethanol

2020-09-15
2020-01-2129
Blends of gasoline, diesel fuel and ethanol (“dieseline”) have shown promise in engine studies examining low temperature combustion using compression ignition. They offer the possibility of high efficiency combined with low emissions of oxides of nitrogen and soot. However, unlike gasoline or diesel fuel alone, such mixtures can be flammable in the headspace above the liquid in a vehicle fuel tank at common ambient temperatures. Quantifying their flammability characteristics is important if these fuels are to see commercial service. The parameter of most interest is the Upper Flammable Limit (UFL) temperature, below which the headspace vapour is flammable. In earlier work a mathematical model to predict the flammability of dieseline blends, including those containing ethanol, was developed and validated experimentally. It was then used to study the flammability of a wide variety of dieseline blends parametrically.
Technical Paper

A New TEHD Approach for Sophisticated Simulation of Journal Bearings

2001-10-01
2001-01-3367
The new Thermo-Elasto-Hydro-Dynamic (TEHD) code developed by FEV, is designed to improve the predictability of journal bearing designs and thereby increase the reliability of safety factors in the development of highly loaded internal combustion engines. Advanced analysis tools are evaluated by their performance as well as by their ease of use. High performance means on the one hand: taking into account all the important characteristics, like bearing elasticity or cavitation effects, to mention only some major parameters for modern journal bearing analysis. On the other hand: an economic run-time behavior must be a key feature concerning usability of the TEHD-demands for daily development praxis. Ease of use means also, that the TEHD model can easily be used as a plug-in routine of an already existing software package that is well known to the development departments.
Technical Paper

A Mathematical Model for the Vapour Composition and Flammability of Gasoline - Diesel Mixtures in a Fuel Tank

2017-10-08
2017-01-2407
Low Temperature Combustion using compression ignition may provide high efficiency combined with low emissions of oxides of nitrogen and soot. This process is facilitated by fuels with lower cetane number than standard diesel fuel. Mixtures of gasoline and diesel (“dieseline”) may be one way of achieving this, but a practical concern is the flammability of the headspace vapours in the vehicle fuel tank. Gasoline is much more volatile than diesel so, at most ambient temperatures, the headspace vapours in the tank are too rich to burn. A gasoline/diesel mixture in a fuel tank therefore can result in a flammable headspace, particularly at cold ambient temperatures. A mathematical model is presented that predicts the flammability of the headspace vapours in a tank containing mixtures of gasoline and diesel fuel. Fourteen hydrocarbons and ethanol represent the volatile components. Heavier components are treated as non-volatile diluents in the liquid phase.
Technical Paper

A Parametric Study of the Flammability of Dieseline Blends with and without Ethanol

2019-01-15
2019-01-0020
Low Temperature Combustion using compression ignition may provide high efficiency combined with low emissions of oxides of nitrogen and soot. This process is facilitated by fuels with lower cetane number than standard diesel fuel. Mixtures of gasoline and diesel (“dieseline”) may be one way of achieving this; however, a gasoline/diesel mixture in a fuel tank can result in a flammable headspace, particularly at very cold ambient temperatures. A mathematical model to predict the flammability of dieseline blends, including those containing ethanol, was previously validated. In this paper, that model is used to study the flammability of dieseline blends parametrically. Gasolines used in the simulations had Dry Vapour Pressure Equivalent (DVPE) values of 45, 60, 75, 90 and 110 kPa.
X