Refine Your Search

Topic

Author

Search Results

Technical Paper

A Comparative Study of Automotive Side Window Occupant Containment Characteristics for Tempered and Laminated Glass

2006-04-03
2006-01-1492
This study investigates occupant containment characteristics of tempered and laminated automotive moveable side glass in rollover collisions. FMVSS 216 test protocols were used to induce roof damage or sheet metal damage around the window opening in Lincoln Navigators equipped with tempered and laminated side glass. Dummy-drop tests were then performed to investigate relative containment. The results demonstrate that, for rollovers in which the window structure is compromised, tempered side glass and laminated side glass perform comparably relative to occupant containment. Also discussed are the general strength characteristics of different types of glass construction, the availability of laminated side glass in recent model U.S. vehicles, and anecdotal data supporting the conclusions of testing.
Technical Paper

Kinetic Modelling Study of Octane Number and Sensitivity of Hydrocarbon Mixtures in CFR Engines

2005-09-11
2005-24-077
Aim of this work is to present and discuss the possibility and the limits of two zone models for spark-ignition engines using a detailed kinetic scheme for the characterization of the evolution of the air-fuel mixture, while an equilibrium approach is used for the burnt zone. Simple experimental measurements of knocking tendency of different fuels in ideal reactors, such as rapid compression machines and shock tube reactors, cannot be directly used for the analysis of octane numbers and sensitivity of hydrocarbon mixtures. Thus a careful investigation is very useful, not only of the combustion chamber behavior, including the modelling of the turbulent flame front propagation, but also of the fluid dynamic behavior of the intake and exhaust system, accounting for the volumetric efficiency of the engine.
Technical Paper

Aerodynamics In The Future

2005-10-03
2005-01-3358
In the future, it will be possible to manufacture very small, robust machines, which may be attached to the surface of a wing allowing the classic boundary condition of “no-slip” to be altered at will. It is also possible that the heat transfer through the wing surface can be controlled. This paper reports an investigation into the possible benefits to aerodynamics that will occur if such machines become available. It is found that imposing an isothermal wing surface can increase the lift drag ratio of wing at transonic cruise and allowing slip at the surface can have the same effect. Both these effects are additive. It is found that control of heat transfer on a wing at hypersonic wing can act as a control device, comparable to that due a moderate flap deflection.
Technical Paper

Progress in Diesel HCCI Combustion Within the European SPACE LIGHT Project

2004-06-08
2004-01-1904
The purpose of the European « SPACE LIGHT » (Whole SPACE combustion for LIGHT duty diesel vehicles) 3-year project launched in 2001 is to research and develop an innovative Homogeneous internal mixture Charged Compression Ignition (HCCI) for passenger cars diesel engine where the combustion process can take place simultaneously in the whole SPACE of the combustion chamber while providing almost no NOx and particulates emissions. This paper presents the whole project with the main R&D tasks necessary to comply with the industrial and technical objectives of the project. The research approach adopted is briefly described. It is then followed by a detailed description of the most recent progress achieved during the tasks recently undertaken. The methodology adopted starts from the research study of the in-cylinder combustion specifications necessary to achieve HCCI combustion from experimental single cylinder engines testing in premixed charged conditions.
Technical Paper

Development of Fully-Automatic Parallel Algorithms for Mesh Handling in the OpenFOAM®-2.2.x Technology

2013-09-08
2013-24-0027
The current development to set up an automatic procedure for automatic mesh generation and automatic mesh motion for internal combustion engine simulation in OpenFOAM®-2.2.x is here described. In order to automatically generate high-quality meshes of cylinder geometries, some technical issues need to be addressed: 1) automatic mesh generation should be able to control anisotropy and directionality of the grid; 2) during piston and valve motion, cells and faces must be introduced and removed without varying the overall area and volume of the cells, to avoid conservation errors. In particular, interpolation between discrete fields is frequent in computational physics: the use of adaptive and non-conformal meshes necessitates the interpolation of fields between different mesh regions. Interpolation problems also arise in areas such as model coupling, model initialization and visualisation.
Technical Paper

Experimental Validation of Combustion Models for Diesel Engines Based on Tabulated Kinetics in a Wide Range of Operating Conditions

2017-09-04
2017-24-0029
Computational fluid dynamics represents a useful tool to support the design and development of Heavy Duty Engines, making possible to test the effects of injection strategies and combustion chamber design for a wide range of operating conditions. Predictive models are required to ensure accurate estimations of heat release and the main pollutant emissions within a limited amount of time. For this reason, both detailed chemistry and turbulence chemistry interaction need to be included. In this work, the authors intend to apply combustion models based on tabulated kinetics for the prediction of Diesel combustion in Heavy Duty Engines. Four different approaches were considered: well-mixed model, presumed PDF, representative interactive flamelets and flamelet progress variable. Tabulated kinetics was also used for the estimation of NOx emissions.
Technical Paper

Gas Exchange and Injection Modeling of an Advanced Natural Gas Engine for Heavy Duty Applications

2017-09-04
2017-24-0026
The scope of the work presented in this paper was to apply the latest open source CFD achievements to design a state of the art, direct-injection (DI), heavy-duty, natural gas-fueled engine. Within this context, an initial steady-state analysis of the in-cylinder flow was performed by simulating three different intake ducts geometries, each one with seven different valve lift values, chosen according to an estabilished methodology proposed by AVL. The discharge coefficient (Cd) and the Tumble Ratio (TR) were calculated in each case, and an optimal intake ports geometry configuration was assessed in terms of a compromise between the desired intensity of tumble in the chamber and the satisfaction of an adequate value of Cd. Subsequently, full-cycle, cold-flow simulations were performed for three different engine operating points, in order to evaluate the in-cylinder development of TR and turbulent kinetic energy (TKE) under transient conditions.
Technical Paper

Direct Evaluation of Turbine Isentropic Efficiency in Turbochargers: CFD Assisted Design of an Innovative Measuring Technique

2019-04-02
2019-01-0324
Turbocharging is playing today a fundamental role not only to improve automotive engine performance, but also to reduce fuel consumption and exhaust emissions for both Spark Ignition and Diesel engines. Dedicated experimental investigations on turbochargers are therefore necessary to assess a better understanding of its performance. The availability of experimental information on turbocharger steady flow performance is an essential requirement to optimize the engine-turbocharger matching, which is usually achieved by means of simulation models. This aspect is even more important when referred to the turbine efficiency, since its swallowing capacity can be accurately evaluated through the measurement of mass flow rate, inlet temperature and pressure ratio across the machine.
Technical Paper

Effects of Turbulence Modulation Addition in OpenFOAM® Toolkit on High Pressure Fuel Sprays

2011-04-12
2011-01-0820
The OpenFOAM® CFD methodology is nowadays employed for simulation in internal combustion engines and a lot of work has been done for an appropriate description of all complex phenomena. At the moment in the RANS turbulence models available in the OpenFOAM® toolbox the turbulence modulation is not yet included, and the present work analyzes the predictive capabilities of the code in simulating high injection pressure fuel sprays after modeling the influence of the dispersed phase on the turbulence structure. Different experiments were employed for the validation. At first, non-evaporating diesel spray was considered in a constant volume and quiescent vessel. The validation was performed via the available experimental spray evolution in terms of penetrations and spatial/temporal fuel distributions. Then the Sandia combustion chamber was chosen for diesel spray simulation in non-reacting conditions.
Technical Paper

Tire Ply-Steer, Conicity and Rolling Resistance - Analytical Formulae for Accurate Assessment of Vehicle Performance during Straight Running

2019-04-02
2019-01-1237
The aim of the paper is to provide simple and accurate analytical formulae describing the straight motion of a road vehicle. Such formulae can be used to compute either the steering torque or the additional rolling resistance induced by vehicle side-slip angle. The paper introduces a revised formulation of the Handling Diagram Theory to take into account tire ply-steer, conicity and road banking. Pacejka’s Handling Diagram Theory is based on a relatively simple fully non-linear single track model. We will refer to the linear part of the Handling Diagram, since straight motion will be considered only. Both the elastokinematics of suspension system and tire characteristics are taken into account. The validation of the analytical expressions has been performed both theoretically and after a subjective-objective test campaign. By means of the new and unreferenced analytical formulae, practical hints are given to set to zero the steering torque during straight running.
Technical Paper

Aerodynamic Analysis of an Unmanned Cyclogiro Aircraft

2018-10-29
2018-01-6005
Very little is currently known of the aerodynamic interaction between neighboring cycloidal rotors. Such knowledge is, however, of crucial importance to tune the controller and rotor disposition of a cyclogiro aircraft. Thus, a three-dimensional computational fluid dynamics (CFD) model is developed, validated, and used to analyze the D-Dalus L1 four-rotor unmanned aircraft operating under several configurations. The model solves the Euler equations using the OpenFOAM toolbox in order to provide fast results on a desktop computer. Validation is performed against thrust forces and flow streamlines obtained during wind tunnel experiments at various flight velocities. Numerical results from CFD match the trends of the experimental data. Flow behavior matches the video footage of the wind tunnel tests. Although boundary layer effects are neglected, satisfactory results are obtained both qualitatively and quantitatively.
Technical Paper

Application of Adaptive Local Mesh Refinement (ALMR) Approach for the Modeling of Reacting Biodiesel Fuel Spray using OpenFOAM

2014-10-13
2014-01-2565
Modeling the combustion process of a diesel-biodiesel fuel spray in a 3-dimensional (3D) computational fluid dynamics (CFD) domain remains challenging and time-consuming despite the recent advancement in computing technologies. Accurate representation of the in-cylinder processes is essential for CFD studies to provide invaluable insights into these events, which are typically limited when using conventional experimental measurement techniques. This is especially true for emerging new fuels such as biodiesels since fundamental understanding of these fuels under combusting environment is still largely unknown. The reported work here is dedicated to evaluating the Adaptive Local Mesh Refinement (ALMR) approach in OpenFOAM® for improved simulation of reacting biodiesel fuel spray. An in-house model for thermo-physical and transport properties is integrated to the code, along with a chemical mechanism comprising 113 species and 399 reactions.
Technical Paper

Experimental Evaluation of Wind Noise Sources: A Case Study

1999-05-17
1999-01-1812
Several of the authors have recently developed procedures to efficiently evaluate experimentally the relative contributions of various wind noise paths and sources. These procedures are described and, as a case study, results are provided for the noise in the interior of a production automobile subjected to wind tunnel airflow. The present measurements and analysis indicate that for the tested vehicle significant contributions to interior noise are provided by underbody and wheel well flows, radiation from the roof and seal aspiration. A significant tone associated with vortex shedding from the radio antenna was also noted.
Technical Paper

The Air Assisted Direct Injection ELEVATE Automotive Engine Combustion System

2000-06-19
2000-01-1899
The purpose of the ELEVATE (European Low Emission V4 Automotive Two-stroke Engine) industrial research project is to develop a small, compact, light weight, high torque and highly efficient clean gasoline 2-stroke engine of 120 kW which could industrially replace the relatively big existing automotive spark ignition or diesel 4-stroke engine used in the top of the mid size or in the large size vehicles, including the minivan vehicles used for multi people and family transportation. This new gasoline direct injection engine concept is based on the combined implementation on a 4-stroke bottom end of several 2-stroke engine innovative technologies such as the IAPAC compressed air assisted direct fuel injection, the CAI (Controlled Auto-Ignition) combustion process, the D2SC (Dual Delivery Screw SuperCharger) for both low pressure engine scavenging and higher pressure IAPAC air assisted DI and the ETV (Exhaust charge Trapping Valve).
Journal Article

Improved Analytical Model of an Outer Rotor Surface Permanent Magnet Machine for Efficiency Calculation with Thermal Effect

2017-03-28
2017-01-0185
In this paper, an improved analytical model accounting for thermal effects in the electromagnetic field solution as well as efficiency map calculation of an outer rotor surface permanent magnet (SPM) machine is described. The study refers in particular to an in-wheel motor designed for automotive electric powertrain. This high torque and low speed application pushes the electric machine close to its thermal boundary, which necessitates estimates of winding and magnet temperatures to update the winding resistance and magnet remanence in the efficiency calculation. An electromagnetic model based on conformal mapping is used to compute the field solution in the air gap. The slotted air-gap geometry is mapped to a simpler slotless shape, where the field solution can be obtained by solving Laplace's equation for scalar potential. The canonical slottless domain solution is mapped back to the original domain and verified with finite element model (FEM) results.
Technical Paper

A Low Cost System for Active Gear Shift and Clutch Control

2015-04-14
2015-01-0228
The objective of this study is to demonstrate the design and construction of an innovative active gear-shift and clutch for racecars, applied to a Formula Student car, based on the use of DC gear-motors. Racecars require extremely quick gear-shifts and every system to be as light as possible. The proposed solution is designed to reduce energy consumption, weight and improve gear-shift precision compared to traditionally employed electro-hydraulic solutions, although maintaining state of the art performances.
Technical Paper

Combustion Modeling in Heavy Duty Diesel Engines Using Detailed Chemistry and Turbulence-Chemistry Interaction

2015-04-14
2015-01-0375
Diesel combustion is a very complex process, involving a reacting, turbulent and multi-phase flow. Furthermore, heavy duty engines operate mainly at medium and high loads, where injection durations are very long and cylinder pressure is high. Within such context, proper CFD tools are necessary to predict mixing controlled combustion, heat transfer and, eventually, flame wall interaction which might result from long injection durations and high injection pressures. In particular, detailed chemistry seems to be necessary to estimate correctly ignition under a wide range of operating conditions and formation of rich combustion products which might lead to soot formation. This work is dedicated to the identification of suitable methodologies to predict combustion in heavy-duty diesel engines using detailed chemistry.
Technical Paper

Automatic Mesh Generation for CFD Simulations of Direct-Injection Engines

2015-04-14
2015-01-0376
Prediction of in-cylinder flows and fuel-air mixing are two fundamental pre-requisites for a successful simulation of direct-injection engines. Over the years, many efforts were carried out in order to improve available turbulence and spray models. However, enhancements in physical modeling can be drastically affected by how the mesh is structured. Grid quality can negatively influence the prediction of organized charge motion structures, turbulence generation and interaction between in-cylinder flows and injected sprays. This is even more relevant for modern direct injection engines, where multiple injections and control of charge motions are employed in a large portion of the operating map. Currently, two different approaches for mesh generation exist: manual and automatic. The first makes generally possible to generate high-quality meshes but, at the same time, it is very time consuming and not completely free from user errors.
Technical Paper

An Extension of the Dynamic Mesh Handling with Topological Changes for LES of ICE in OpenFOAM®

2015-04-14
2015-01-0384
The paper focuses on the development of a mesh moving method based on non-conformal topologically changing grids applied to the simulation of IC engines, where the prescribed motion of piston and valves is accomplished by rigidly translating the sub-domain representing the moving component. With respect to authors previous work, a more robust and efficient algorithm to handle the connectivity of non-conformal interfaces and a mesh-motion solver supporting multiple layer addition/removal of cells, to decouple the time-step constraints of the mesh motion and of the fluid dynamics, has been implemented as a C++ library to extend the already existing classes for dynamic mesh handling of the finite-volume, open-source CFD code OpenFOAM®. Other new features include automatic decomposition of large multiple region domains to preserve processors load balance with topological changes for parallel computations and additional tools for automatic preprocessing and case setup.
Technical Paper

Future General Aviation Piston Engines and Fuels - An Integrated Approach

2004-04-20
2004-01-1810
The continued availability of leaded specialty aviation gasolines remains as an item of crucial importance in the near-term future of general aviation; however, the development of new piston engines capable of operation with other transportation fuels available in large pools is considered an indispensable element in the long-range survival of the industry. This paper offers a road map that while allowing the continued utilization of the current fleet of piston aircraft, sets the stage for a transition to new piston powerplants and associated aircraft, compatible with widely available transportation fuels such as motor gasoline based aviation fuels for the lower and some medium performance aircraft, and aviation turbine fuels for the balance of medium and high performance airplanes.
X