Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

CFD-Guided Heavy Duty Mixing-Controlled Combustion System Optimization with a Gasoline-Like Fuel

2017-03-28
2017-01-0550
A computational fluid dynamics (CFD) guided combustion system optimization was conducted for a heavy-duty compression-ignition engine with a gasoline-like fuel that has an anti-knock index (AKI) of 58. The primary goal was to design an optimized combustion system utilizing the high volatility and low sooting tendency of the fuel for improved fuel efficiency with minimal hardware modifications to the engine. The CFD model predictions were first validated against experimental results generated using the stock engine hardware. A comprehensive design of experiments (DoE) study was performed at different operating conditions on a world-leading supercomputer, MIRA at Argonne National Laboratory, to accelerate the development of an optimized fuel-efficiency focused design while maintaining the engine-out NOx and soot emissions levels of the baseline production engine.
Technical Paper

An Investigation of Grid Convergence for Spray Simulations using an LES Turbulence Model

2013-04-08
2013-01-1083
A state-of-the-art spray modeling methodology, recently applied to RANS simulations, is presented for LES calculations. Key features of the methodology, such as Adaptive Mesh Refinement (AMR), advanced liquid-gas momentum coupling, and improved distribution of the liquid phase, are described. The ability of this approach to use cell sizes much smaller than the nozzle diameter is demonstrated. Grid convergence of key parameters is verified for non-evaporating and evaporating spray cases using cell sizes down to 1/32 mm. It is shown that for global quantities such as spray penetration, comparing a single LES simulation to experimental data is reasonable, however for local quantities the average of many simulated injections is necessary. Grid settings are recommended that optimize the accuracy/runtime tradeoff for LES-based spray simulations.
X