Refine Your Search

Topic

Author

Search Results

Technical Paper

Visualization techniques to identify and quantify sources and paths of exterior noise radiated from stationary and nonstationary vehicles

2000-06-12
2000-05-0326
In recent years, Nearfield Acoustical Holography (NAH) has been used to identify stationary vehicle exterior noise sources. However that application has usually been limited to individual components. Since powertrain noise sources are hidden within the engine compartment, it is difficult to use NAH to identify those sources and the associated partial field that combine to create the complete exterior noise field of a motor vehicle. Integrated Nearfield Acoustical Holography (INAH) has been developed to address these concerns: it is described here. The procedure entails sensing the sources inside the engine compartment by using an array of reference microphones, and then calculating the associated partial radiation fields by using NAH. In the second part of this paper, the use of farfield arrays is considered. Several array techniques have previously been applied to identify noise sources on moving vehicles.
Technical Paper

Trend toward weight reduction of automobile body in Japan

2000-06-12
2000-05-0240
With society demanding automobiles that provide higher fuel efficiency, safety of occupants in collisions and that at the end of their service life can be recycled with low environmental impact, the steel industry is tackling the needs of the automobile industry by developing ever-higher performance steel materials and simulation technologies that can demonstrate the performance of steel materials at the development stage without the need for costly prototype testing. In this paper, weight reduction of automobile body in Japan will be discussed. The main items will be as follows: (1) Development of Automobile Steel Sheets, (2) Materials for Automobile Bodies, (3) Materials and Technologies (Tailored Blanks, Hydroforming and Locally Quenching) for Reducing the Weight of Panels and Reinforcing members, (4) Future Prospects.
Technical Paper

Influence of Material and Mechanical Properties on Thermal Fatigue Life of Aluminum Castings

1995-02-01
950720
There is ever an increasing need for weight reduction and high performance of engine (clean smoke and improving fuel economy) To achieve this, recently aluminum castings are used for engine parts such as cylinder heads that construct combustion chamber and are required thermal resistance. This paper describes thermal fatigue tests of aluminum castings that are made under various conditions of cooling rate during solidification, heat treatment, and chemical compositions. It further investigates the influence of material (such as cooling rate, chemical conmposition and heat treatment) and mechanical properties (such as σB, δ, E ) on thermal fatigue life of aluminum castings.
Technical Paper

Perforation Corrosion of Automobiles - Field Car and Laboratory Investigation

1993-10-01
932367
In order to clarify the effect of design and materials of the hem as well as the climatic factors on perforation corrosion of the automobile doors, field car and laboratory investigation has been carried out Field car investigation revealed that corrosion of the hem can be minimized by using two side galvanized steel plus adhesives. The ratio of wet/dry environment was evaluated in laboratory on hemmed sample, and it was found that the design of the hem in conjunction with the various wet/dry ratio affected the corrosion rate differently.
Technical Paper

Experimental Analysis of the Stick-Slip Noise from the Crankshaft Oil Seal of the Diesel Engine

2007-08-05
2007-01-3502
The noise of diesel engines operating at low idle is an important noise evaluation criterion in both commercial vehicles and passenger cars. At low idle, a quiet, pleasant noise is required. Accordingly, unusual noise occurrence at low speed is a serious problem, and the noise must be prevented. In this paper, characteristics of the stick-slip noise, which is an unusual noise that radiates from the oil seal at low idle and the generating mechanism of the stick-slip noise in the six-cylinder-inline diesel engine are discussed. In addition, a method to prevent the stick-slip noise is presented.
Technical Paper

Application of Vibration Damping Steel Sheet for Autobody Structural Parts

1992-02-01
920249
As a demand for vehicles of higher functionality grows, automakers and material suppliers are devoting increasing efforts to develop technologies for greater safety, lighter weight, higher corrosion resistance, and enhanced quietness. The resin-sandwiched vibration damping steel sheet (VDSS), developed as a highly functional material for reducing vehicle vibration and noise, has been used for oil pans1) and compartment partitions2). First applied for a structural dash panel of the new Mazda 929, a Zn-Ni electroplated VDSS which allows direct electric welding has contributed to greater weight reduction as well as improved quietness.
Technical Paper

Study of Formable High Strength Steel Sheets for Automotive Panels

1992-02-01
920247
Weight reduction of automobiles is one of the most highlighted subjects in automobile industry from the energy saving and clean environment points of view. A typical approach for the purpose is to use high strength steel sheets as well as optimizing designs and using low density materials. It is not, however, easy to apply high strength steel sheets to automotive panels because of their strict requirement for the shape-fixability although a high dent resistance is also required. Besides the use of bake hardening steels, two different high strength steel sheets, which are a continuously annealed extra-low carbon titanium-added IF steel and a low carbon TRIP steel which contains about six volume% of austenite, were assessed for the application to automotive panels in combination with a tension-controled press-forming technique and showed as good shape-fixability as a conventional box-annealed aluminum-killed DDQ steel sheet when high blank-holding-forces were applied.
Technical Paper

Properties of a Newly Developed Organic Composite Coated Steel Sheet for Automotive Use

1992-02-01
920172
The newly developed sheet steel lightly coated with an organic composite is as follows. Zn-Ni alloy plated sheet steel with a coating weight of 30 g/m2 and average Ni concentration of 11.5 ∼12.0 % is chromated through electrolysis. The coating weight of chromate film is 50 ∼90 mg/m2 in Cr. Furthermore, emulsified olefin-acrylic acid copolymer resin mixed with colloidal silica of particle size 7 ∼8 nm applied to a thickness of 1.0 ∼1.8 μm. Olefin-acrylic acid copolymer resin and colloidal silica are mixed at the rate of 100 and 30 (parts by weight). It maintains excellent corrosion resistance even after forming, C-ED paint corrosion resistance and paint adhesion. Furthermore, it has excellent perforation resistance. The product has excellent weldability and is well suited to continuous forming, too.
Technical Paper

A Numerical Study of Wind Noise Around Front Pillar

1993-03-01
930296
A numerical analysis method is developed for predicting the pressure fluctuations on the front side window surface, aiming at the elucidation of the external aerodynamic flow structure about the front pillar of a road vehicle. The simulated results are assessed by comparison with the acoustic theory and reveal fairly well the dependence of the predicted surface pressure fluctuations upon the vehicle cruising speed with the sixth power law. The features of three dimensional vortical flow are clarified from the analysis of the simulated results, indicating the strong relationship between the vortical formation and the external pressure fluctuations on the front side window surface. The external pressure fluctuations seem to be strongly related to the vortex breakdown during its interaction with the front side window and the roof-side window junction.
Technical Paper

The Development of Vibration Damping Steel Sheet For Automotive Use

1989-02-01
890708
Vibration Damping Steel Sheet (VDSS) for automotive use, which has a three layer structure of steel/viscoelastic resin/steel, has been studied. For automotive body panels, VDSS is required to have not only high vibration damping capability but also other properties such as bonding strength, formability, weldability and durability. In this research, the effect of resin layer on these properties was studied. It is found that VDSS which satisfies these properties can be made from thermosetting resin involving metal particles.
Technical Paper

Experiment and Computation Analyses for Torsional Vibration of Crankshaft System with Viscous Torsional Damper on Diesel Engine

1999-05-17
1999-01-1748
Experiment results were compared with computation analysis results for torsional vibration on a crankshaft system with/without a torsional viscous damper on a six-cylinder in-line type turbocharged diesel engine and a V type ten-cylinder naturally-aspirated diesel engine respectively. At first, the boundary conditions for boundary element method (BEM) model were determined to estimate the torsional stiffness of the crank-throws of the crankshafts. Then, the estimated stiffness was used to calculate the natural frequencies of the torsional vibration without the damper by dynamic stiffness matrix method. As a result, the calculated natural frequencies approximately agreed with the measured ones. Finally, the torsional vibration with the damper was analyzed by using the dynamic stiffness matrix method and complex viscous damping coefficients for the damper. The calculated torsional amplitudes and resonant engine speeds agreed with the experiment results.
Technical Paper

High-Strength Cold-Rolled Steels Produced by Continuous Annealing and Their Automotive Applications

1981-02-01
810028
In continuous annealing, accelerated cooling methods have recently found practical application in addition to conventional gas jet cooling or water jet quenching method. Moderate cooling rate of gas jet cooling or accelerated cooling makes it possible to utilize new high-strength steels with excellent properties. The faster cooling rate deteriorates ductility of steels. These newly developed steels are improved rephosphorized steels with high r̄-value and high bake hardenability, dual phase steels with superior ductility, Ti-stabilized high-strength steels with very high r̄-value, grain boundary hardening steels employing low temperature annealing, and unique ultra high-strength steels. This paper describes properties and process factors of these steels, and their applications to automotive.
Technical Paper

Effect of Strengthening Mechanism on Fatigue Properties of Hot-Rolled Sheet Steels

2002-03-04
2002-01-0042
The influence of tensile strength on fatigue strength and the effect of strengthening mechanism on fatigue notch factor were investigated into conventional mild steels, HSLA steels, DP steels and TRIP steels. The grade of studied steels was altered from 440MPa to 780MPa. Not only smooth fatigue specimens with side surface ground and smooth fatigue specimens with laser-cut side surface but also fatigue specimens with a pierced hole were prepared for each of steel sheets. Fatigue tests were conducted in an axial load method. These experiments made it clear that the fatigue limits of smooth specimen increase along the tensile strength approximately independent of strengthening mechanism but those of notched specimen do not necessarily increase along the tensile strength. Namely, fatigue limits of DP steels and TRIP steels with notch increase in proportion to tensile strength although those of HSLA steels with notch do not increase.
Technical Paper

The Use of Nearfield Acoustical Holography (NAH) and Partial Field Decomposition to Identify and Quantify the Sources of Exterior Noise Radiated from a Vehicle

1997-05-20
972053
Since powertrain noise sources are usually “hidden” within the engine compartment, it is difficult to use NAH to identify those sources and the associated partial radiation fields that together create the exterior noise field of a motor vehicle. Integrated Nearfield Acoustical Holography (INAH) has been developed to address this concern. INAH represents a combination of NAH, reference microphone selection procedures, and coherence techniques. The procedure entails sensing the sources inside the engine compartment by using an array of reference microphones, and then calculating the associated partial radiation fields by using NAH. A key factor in the success of this procedure is the selection of a good reference microphone sub-set. A selection procedure has been developed by combining condition number and coherence analyses. The partial field determination problem has been approached by using both partial coherence and Singular Value Decomposition (SVD) procedures.
Journal Article

Analysis of Ticking Noise from Cam Bearing of a Diesel Engine

2012-09-10
2012-01-1625
Improving idle sound quality as well as reducing idle noise level is increasingly demanded for diesel engines. Therefore, unusual noise occurrence at idle is a serious problem, and the noise must be removed. This paper describes the characteristics and mechanism of ticking noise that is unusual noise radiated from the journal bearing of the camshaft at low idle speeds, based on the mechanism of cavitation in oil film existing between the journal and bearing.
Technical Paper

Comparison between Experiments and FEM Simulation of High Velocity Tensile Test Methods to Clarify Test Method's Influence of High Strength Steel

2000-10-03
2000-01-2725
In order to examine the compatibility of improvement of crashworthiness with weight-saving of automobiles by using high strength steel, a combination analysis of Finite Element Method and Dynamic Mechanical Properties has been established. The material properties used in this analysis have been measured by “one bar method” high velocity tensile tests, which can examine the deformation behaviour of materials at an actual crash speed range (∼55km/h). As for the accuracy of this system, comparison between experiments and FEM simulation both of this test machine and other high-velocity-tensile-test machines have clarified the feature of one bar method and the metallurgical features of high velocity deformation. It was confirmed that the stress-strain curve measured by the one bar method agreed with that measured by the modified Split Hopkinson pressure bar method.
Technical Paper

Crankshaft Impact Noise and Three-Dimensional Vibration

2014-10-13
2014-01-2863
This paper describes the characteristics and mechanism of crankshaft impact noise that radiates from the cylinder body at full load medium engine speeds, based on the mechanism for axial vibration of crankshaft coupled with torsional vibration of crankshaft.
Technical Paper

Power and Cross Spectral Analysis of an Automobile Engine Mounting

1965-02-01
650018
A simple and easy calculation may be performed, using a three-mass vibration system model, to study the influence of an engine mounting on automobile vertical vibration. The advantage of an engine mounting of high damping rubber is confirmed by this calculation, and is further verified by using power and cross spectral analysis of an automobile random vibration. The validity of the three-mass vibration system is shown.
Technical Paper

Forming Performance of Aluminum Alloy Sheets for Automobile Body Panels

1995-02-01
950924
Improvement of material characteristic values, adjustment of forming conditions as well as introduction of new forming technics are necessary to promote wide application of aluminum alloy sheets into automotive parts. 5000 series and 6000 series aluminum alloy sheets are concerned about the relationship between material characteristic values and fundamental forming ability required to apply them to automobile body parts as well as the effect of lubricant on their formability. The hardening parameters, n values, of them are larger than those of cold-rolled steel sheets. However, the r values and the local elongations are extremely small. The improvement of stretch formability owing to increase of n value is smaller than that of the steel sheets. Inferior deep drawability of the aluminum alloy sheets is due to low fracture resistance force caused by low r value.
Technical Paper

Development of High Strength Steel Sheet with Excellent Stretch Flange Formability for Automobile Application

1994-03-01
940943
With the aim of improving stretch-flange formability by further reducing carbides in steel, the authors studied the hole expansion ratio of a steel consisting entirely of ferrite and the factors governing the hole expansion ratio. Ultra low carbon steels adding Ti and/or Nb showed a higher hole expansion ratio than conventional steels, but their hole expansion ratio was not higher than the hole expansion ratio of bainitic steel reported before1). On the other hand, it was found from study of the relationship between hole expansion ratio and r-value of various steels, including cold-rolled interstitial-free steels, that the hole expansion ratio of a steel consisting only of the ferrite phase is strongly influenced by the minimum r-value and n-value and that it improves as the r- and n-values increase. The steel added Ti and/or Nb has a strong anisotropy of r-value, hence its minimum r-value is small. This is disadvantageous to hole expansion ratio.
X