Refine Your Search




Search Results

Technical Paper

New DOC for Light Duty Diesel DPF System

A new state of the art DOC (Diesel Oxidation Catalyst) having superior light-off and exothermic activity for forced regeneration compared to conventional Pt base passive DOC, was investigated for LDD application. The DOC uses the latest Pt/Pd technology resulting cost effective DPF system. The newly developed DOC demonstrated improved catalytic activities from Pt only DOC in model gas or engine bench tests. In this study, DOC at early development stage showed excellent light-off activity in model gas and engine bench test compared to conventional Pt only DOC, however, it showed “extinction” phenomenon which is one of the deactivation mode while the post injection and it was observed when post injection operation was done at lower DOC inlet temperatures, e.g. below 250 C. Temperature profiles along diameter and length into DOC bed while active regeneration suggested extinction would be caused by fouling of supplied hydrocarbons derived from diesel fuel.
Technical Paper

A Study of Transmission fluid Performance on Fuel Economy

To apply a fuel economy performance to AT&CVT fluid for common use (hereinafter AT/CVT fluid) and manual transmission fluid, by optimizing fluid viscosity, a fundamental study was investigated. Generally, it is well known that the viscosity of polymer-added transmission fluids is gradually reduced, due to deterioration of the viscosity index improver caused by shear stress. An excessive viscosity reduction causes an operation failure or damage to the transmission. Considering above factor, the authors focused attention on the potential of a low viscosity formulation to improve fuel efficiency by reducing an internal stirring-resistance of the transmission. Also from the viewpoint of friction characteristics, the performance of a base oil was studied. Utilizing the EHL (Elast-Hydrodynamic Lubrication) tester [1] and vehicle tests, the performance of base oils was evaluated for the fluid development.
Technical Paper

Direct Simulation for Aerodynamic Noise from Vehicle Parts

Flows around a forward facing step and a fence are simulated on structured grid to estimate aerodynamic noise by using direct simulation. Calculated results of sound pressure level show quantitatively good agreement with experimental results. To estimate aerodynamic noise from 3D complex geometry, a simplified side mirror model is also calculated. Averaged pressure distribution on the mirror surface as well as pressure fluctuations on the mirror surface and ground are simulated properly. However, calculated result of sound pressure level at a location is about 20dB higher than experiment due to insufficient spatial resolution. To capture the propagation of sound waves, more accuracy seems to be required.
Technical Paper

An Improvement of the Prediction Method of the Idling Rattle in Manual Transmission - In the Case of the Manual Transmission with Backlash Eliminator -

To reduce the idling rattle of manual transmissions, the computer simulation has been utilized. However, the conventional simulation model could not express properly the relationship between the transmission oil temperature and the rattle noise level, especially in case of transmission with backlash eliminator in constant mesh gears. In this study, the authors carried out detail experiments investigating the motion of each part in the transmission. Based on the experimental results, an additional mass representing all constant mesh speed gears supported on plain or rolling element bearings was introduced to the simulation model. Using the improved model, it was confirmed that the calculated RMS value of the fluctuation in countershaft angular acceleration corresponds to the experimental rattle noise level.
Technical Paper

Trend toward weight reduction of automobile body in Japan

With society demanding automobiles that provide higher fuel efficiency, safety of occupants in collisions and that at the end of their service life can be recycled with low environmental impact, the steel industry is tackling the needs of the automobile industry by developing ever-higher performance steel materials and simulation technologies that can demonstrate the performance of steel materials at the development stage without the need for costly prototype testing. In this paper, weight reduction of automobile body in Japan will be discussed. The main items will be as follows: (1) Development of Automobile Steel Sheets, (2) Materials for Automobile Bodies, (3) Materials and Technologies (Tailored Blanks, Hydroforming and Locally Quenching) for Reducing the Weight of Panels and Reinforcing members, (4) Future Prospects.
Technical Paper

An 1D-3D Integrating Numerical Simulation for Engine Cooling Problem

The combination of 1D and 3D fluid flow models is achieved using a co-simulation methodology. This realizes that the internal flow in a component simulated in 3D is incorporated into a network (system) containing components represented in 1D. This methodology gives the details of the internal flow while conserving overall mass flow in the system, thus eliminating uncertainties in boundary conditions prescribed in the 3D model and reducing the overall simulation time. This paper shows numerical results for internal flow of water flow circuit of engine cooling system and availability and current problem of 1D/3D co-simulation method are discussed.
Technical Paper

Vibro-acoustic FEA Modeling of Two Layer Trim Systems

This paper investigates the potential of using FEA poro-elastic Biot elements for the modeling carpet-like trim systems in a simplified setup. A comparison between FEA computations and experiments is presented for two layer (mass-spring) trim systems placed on a test-rig consisting in a 510×354×1.6 mm flat steel plate clamped in a stiff frame excited at its base. Results are presented for a given heavy layer with two different poro-elastic materials: one foam and one fibrous material. The investigations included accelerometer measurements on the steel plate, laser-doppler vibrometer scans of the heavy layer surface, sound pressure measurements in free field at a distance of 1 meter above the plate, as well as sound pressure in a closed rectangular concrete-walled cavity (0.5×0.6×0.7 m) put on top of the test-rig. Computations were carried out using a commercial FEA software implementing the Biot theory for poro-elastic media.
Technical Paper

Evaluation of the Corrosion Durability of Steel Systems for Automobile Fuel Tanks.

The Strategic Alliance for Steel Fuel Tanks (SASFT), an international group of steel producers and manufacturing companies, recently completed a major corrosion study of various steel ‘systems’ for automobile fuel tanks. The ten steel systems included low carbon steels (either pre-painted or post-painted with protective coatings) and stainless steels. The 2-year corrosion test program included testing in salt solutions to simulate road environments for the exterior of a fuel tank. Special test specimens were designed to represent a manufactured tank. The external tests used were the Neutral Salt Spray test (ASTM B117) with exposures up to 2000 hours and the Cyclic Corrosion test (SAE J2334) with exposures up to 120 and 160 cycles to represent vehicle lives of 15 years and 20 years, respectively. Additionally, the resistance to an aggressive ethanol-containing fuel (internal tank corrosion) was assessed by using uniquely designed drawn cups of the various steel systems.
Technical Paper

Comparison between Experiments and FEM Simulation of High Velocity Tensile Test Methods to Clarify Test Method's Influence of High Strength Steel

In order to examine the compatibility of improvement of crashworthiness with weight-saving of automobiles by using high strength steel, a combination analysis of Finite Element Method and Dynamic Mechanical Properties has been established. The material properties used in this analysis have been measured by “one bar method” high velocity tensile tests, which can examine the deformation behaviour of materials at an actual crash speed range (∼55km/h). As for the accuracy of this system, comparison between experiments and FEM simulation both of this test machine and other high-velocity-tensile-test machines have clarified the feature of one bar method and the metallurgical features of high velocity deformation. It was confirmed that the stress-strain curve measured by the one bar method agreed with that measured by the modified Split Hopkinson pressure bar method.
Technical Paper

Study of Homogeneous Charge Compression Ignition Using a Rapid Compression Machine

The purpose of this study is to explain the characteristics of homogeneous charge compression ignition. n-Heptane, which has the same cetane number as diesel fuel, was chosen for the fuel. A rapid compression machine was used to clarify the effects of air-fuel ratio, O2 concentration, and compression temperature on ignition delay and NOx emission. These investigations allowed the introduction of a formula for ignition delay.
Technical Paper

Crashworthiness Improvement of the Side Crash by the Work Hardening Effect of Pre-Strained High Strength Steel

In order to examine the compatibility of improvement of crashworthiness with weight saving of automobiles by using high strength steel, a combination analysis of Finite Element Method and Dynamic Mechanical Properties has been established. Material properties used in this analysis have been measured by “one bar method” high velocity tensile tests, which can examine the deformation behavior of materials at a bend crush speed range (∼55km/h). It was confirmed that the strength of steel measured by one bar method was raised remarkably after press and hydro forming of high strength steels. It was also confirmed by FEM analysis and load drop test that absorbed energy of bend crush was improved by pre-strain effect. Further, we proved that absorbed energy of bend crush was also improved by appropriate design of thickness and the ratio of bend span and plate length. These effects are applicable to respective high strength steels.
Technical Paper

NOx Trap Catalyst Technologies to Attain 99.5% NOx Reduction Efficiency for Lean Burn Gasoline Engine Application

For fuel economy improvement by lean-burn gasoline engines, extension of their lean operation range to higher loads is desirable as more fuel is consumed during acceleration. Urgently needed therefore is development of emission control systems having as high NOx conversion efficiency as three-way catalysts (TWC) even with more frequent lean operation. The authors conducted a study using catalysts loaded with potassium (K) as the only NOx trapping agent in an emission control system of a lean-burn gasoline engine.
Technical Paper

Human Driving Behavior Analysis and Model Representation with Expertise Acquiring Process for Controller Rapid Prototyping

Driving car means to control a vehicle according to a target path, e.g. road and speed, with some constraints. Human driving models have been proposed and applied for simulations. However, human control in driving has not been analyzed sufficiently comparing with that of machine control system in term of control theory. Input - output property with internal information processing is not easily measured and described. Response of human driving is not as quicker as that of machine controller but human can learn vehicle response to driving operation and predict target changes. Driving behavior of an expert driver and a beginner in an emission test cycle was measured and difference in target speed tracking was looked into with performance indices. The beginner's operation was less stable than that of the expert. Transfer function of the vehicle system was derived based on linearized model to investigate human driving behavior as a tracking controller in the system.
Technical Paper

A Layer Structured Model Based Diagnosis: Application to a Gear Box System

OBD (On Board Diagnosis) has been applied to detect malfunctions in powertrains. OBD requirements have been extended to detect various failures for ensuring the vehicle emission control system being normal. That causes further costs for additional sensors and software works. Two layers diagnosis system is proposed for a passenger car gearbox system to detect changes from normal behavior. Conventional physical constraints based diagnosis is placed on the base layer. Model based diagnosis and specific symptom finding diagnosis are built on the second layer. Conventional physical constraints based diagnosis is direct and effective way to detect the failure of system if the detected signals exceed their normal ranges. However under the case of system failure with related signals still remain in normal ranges, the conventional detection measures can not work normally. Under this case, Model based diagnosis is proposed to enhance the functionality of diagnosis system.
Technical Paper

Numerical Analysis of Thermal Stress Distribution in Metal Substrates for Catalytic Converters

In order to quantitatively evaluate mechanical durability of metal substrates for catalytic converters under heat cycles, thermal stresses and strains were simulated by FEM elastic-plastic analysis. Flat and corrugated sheets constituting honeycomb structures were directly modeled by thick-shell elements without replacing the structures with equivalent solid elements. It was reported that an asymmetric joint structure with “Strengthened Outer Layer” could provide metal substrates with high mechanical durability against heat cycles and the results of analysis in this study could show their high durability. It is important for improvement of mechanical durability to control the location of initial cracks generation and the direction of their propagation.
Technical Paper

Effect of Strengthening Mechanism on Fatigue Properties of Hot-Rolled Sheet Steels

The influence of tensile strength on fatigue strength and the effect of strengthening mechanism on fatigue notch factor were investigated into conventional mild steels, HSLA steels, DP steels and TRIP steels. The grade of studied steels was altered from 440MPa to 780MPa. Not only smooth fatigue specimens with side surface ground and smooth fatigue specimens with laser-cut side surface but also fatigue specimens with a pierced hole were prepared for each of steel sheets. Fatigue tests were conducted in an axial load method. These experiments made it clear that the fatigue limits of smooth specimen increase along the tensile strength approximately independent of strengthening mechanism but those of notched specimen do not necessarily increase along the tensile strength. Namely, fatigue limits of DP steels and TRIP steels with notch increase in proportion to tensile strength although those of HSLA steels with notch do not increase.
Technical Paper

Numerical and Experimental Study on Improvement of Thermal Performance of Cells in Metal Substrates for Catalytic Converters

In this study, with the purpose of applying to the metal catalyst substrates, we have examined the feasibility of improving the light-off performance of a catalytic converter by enhancing heat transfer in the cells with heat-transfer promoters. Experimental and CFD analyses have been conducted to estimate heat transfer rates and pressure losses of the model cells with hemispherical protrusions. The analyses show that, by enhancing heat transfer of the cells, the cell density can be reduced keeping the catalytic performance in the steady state at the same level as that of conventional ones. As a result, the thermal mass of the substrate can be also reduced effectively without an increase of the pressure loss, and consequently the light-off performance of the catalytic converter can be improved noticeably.
Technical Paper

Multi Attribute Balancing of NVH, Vehicle Energy Management and Drivability at Early Design Stage Using 1D System Simulation Model

Improving fuel efficiency often affects NVH performance. Modifying a vehicle’s design in the latter stages of development to improve NVH performance is often costly. Therefore, to optimize the cost performance, a Multi-Attribute Balancing (MAB) approach should be employed in the early design phases. This paper proposes a solution based on a unified 1D system simulation model across different vehicle performance areas. In the scope of this paper the following attributes are studied: Fuel economy, Booming, Idle, Engine start and Drivability. The challenges to be solved by 1D simulation are the vehicle performance predictions, taking into account the computation time and accuracy. Early phase studies require a large number of scenarios to evaluate multiple possible parameter combinations employing a multi-attribute approach with a systematic tool to ease setup and evaluation according to the determined performance metrics.
Technical Paper

The Mechanism of Hissing Noise in the Automotive Cabin and Countermeasures for its Reduction

The automotive refrigerant system can occasionally exhibit an excessive noise out of air-conditioner (A/C) vents during vehicle’s developments. If the vehicle has been parked for long hours in summer and the A/C system is turned on, sometimes hissing noise is induced by the refrigerant flow. In order to understand the mechanism, a lot of bench and vehicle tests were conducted. However, there is still not enough to understand the physical behavior in detail. Therefore, for the first step, the visualization method to capture the behavior of multi-phased refrigerant flow jet inside the pipe was proposed with a high-speed camera, some light devices and acrylic test piece. In addition, image analysis to quantify the flow regime from a series of observed snapshots. Using proposed method, the correlation study between flow and noise was performed at A/C bench test. As a result, different flow features such as the velocity can be observed in the occurrence of the noise or not.
Technical Paper

Trial of New Concept Diesel Combustion System - Premixed Compression-Ignited Combustion -

A premixed compression-ignited (PCI) combustion system, which realizes lean combustion with high efficiency and low emissions, was investigated and its effects and problems were ascertained. With PCI combustion, fuel was injected early on the compression stroke and a premixed lean mixture was formed over a long mixing period. The test engine was operated with self-ignition of this premixed lean mixture. From the results of combustion observation and numerical simulation, a need to prevent the fuel spray from adhering to the cylinder liner and combustion-chamber wall was identified. Consequently, an impinged-spray nozzle with low penetration was made and tested. As a result, an extremely low nitrogen-oxide (NOx) emission level was realized but fuel efficiency was detracted slightly. Also, the engine operating range possible with PCI combustion was found to be limited to partial-load conditions and PCI combustion was found to cause an increase in hydrocarbon (HC) emission.